Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives Magazine Sponsor RF Cafe Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Alliance Test Equipment Centric RF Empower RF ISOTEC Reactel RF Connector Technology San Francisco Circuits Anritsu Amplifier Solutions Anatech Electronics Axiom Test Equipment Conduct RF Copper Mountain Technologies Exodus Advanced Communications Innovative Power Products KR Filters LadyBug Technologies Rigol TotalTemp Technologies Werbel Microwave Windfreak Technologies Wireless Telecom Group Withwave RF Cafe Software Resources Vintage Magazines RF Cafe Software WhoIs entry for RF Cafe.com Thank you for visiting RF Cafe!
Anritsu Test Equipment - RF Cafe

Innovative Power Products Passive RF Products - RF Cafe

Cafe Press

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

TotalTemp Technologies (Thermal Platforms) - RF Cafe

Carl & Jerry: Tussle with a Tachometer
July 1960 Popular Electronics

July 1960 Popular Electronics

July 1960 Popular Electronics Cover - RF CafeTable of Contents

Wax nostalgic about and learn from the history of early electronics. See articles from Popular Electronics, published October 1954 - April 1985. All copyrights are hereby acknowledged.

This is a great example of how Popular Electronics and John T. Frye used the "Carl & Jerry" series to teach some basic electronics design principles through story telling. The same is true with his long-running "Mac's Service Shop" series of techno-dramas. In this adventure, the the two teenagers decide to build a tachometer from schematics they found in a magazine. They debate amongst themselves how the circuits works, the best way to assemble the circuit, component selection, vibration-tolerant mounting, and how to properly calibrate the tach to accurately display engine revolutions per minute (RPM). Being set in 1960, this is one of the first appearances of transistors in circuits rather than vacuum tubes. Transistors were still very mysterious - and even detested - by many electronics hobbyists and professionals, so pieces like this helped the newfangled technology gain acceptance. 

Carl & Jerry: Tussle with a Tachometer

Carl & Jerry: Tussle with a Tachometer, July 1960 Popular Electronics - RF CafeBy John T. Frye W9EGV

"Here are two electronic tachometers we can build for our car," Jerry said as he spread a magazine and a little yellow booklet on the bench in front of his pal, Carl. "This one uses an 884 thyratron powered by a vibrator power supply. As you can see, it's a detailed construction article, and the gadget uses a relatively inexpensive 1-ma. meter as an indicator.

"The other one, in this booklet published by Sylvania, has two 2N233 transistors connected in a one-shot multivibrator circuit. Power is taken directly from either a six- or twelve-volt car battery. However, about all we have to go on here is the diagram and a very limited description. And this tachometer uses a fairly expensive and delicate 50-μa. meter."

"Do both work on the same principle?"

"Actually, yes. Whenever a selected spark plug fires, the thyratron is triggered into firing or the multi vibrator circuit into flip-flopping. Each 'firing' or 'flip-flop' sends a pulse of current through the meter which has a large capacitor connected across it. This meter-capacitor combination responds to the average current produced by the pulses. Since these pulses are equal in amplitude and are uniformly spaced, the average current indicated by the meter goes up in linear fashion with the frequency of the pulses. That means the meter can be calibrated to show the rpm of the motor."

"I say we build the transistor job," Carl decided, as he finished looking over the two articles. "We have the transistors and the meter, and we should know enough about electronics not to need step-by-step in-structions."

"Okay, but before we start, suppose you tell me once more why we need a tachometer. Remember we resolved that anything we put on the car had to be functional."

"A tachometer is functional," Carl insisted. "Knowing exactly how fast the motor is turning over is important in many cases. For instance, take 'boxwork,' as we hoity-toity motorists call gear-shifting. There is one proper engine speed for each shift, and working with a tachometer permits you to find and use those speeds. Also, we can log the oil pressure for a particular engine speed and use that as a reference later to see if we're losing pressure. We can note at what engine speed our generator begins to charge the battery and use this as a check on the generator's operation. With a little math that takes into account the rear-axle ratio and the rear-wheel circumference, we can convert rpm into mph and check on the accuracy of our speedometer."

"Enough!" Jerry interrupted. "I'm convinced. All that bothers me now is how we're going to calibrate the tachometer."

"Well, just remember that a particular cylinder of a four-cycle engine fires only once every two revolutions," Carl pointed out. "When the engine is turning over at 4000 rpm, our tachometer will be receiving 2000 pulses per minute."

Carl & Jerry study schematics - RF Cafe

"I've got it!" Jerry suddenly interrupted.

"Let's get busy and build the thing. Then I'll show you an easy way to calibrate it."

It didn't take the boys long to collect the parts they needed. But Carl and Jerry prided themselves on making their electronic equipment as compact and well-arranged as possible, so they spent considerable time on layout. Since they realized that the tachometer would be subjected to intense vibration in the car, they anchored all parts for the multivibrator circuit solidly on a small perforated board of insulated material, and then fastened this board securely inside a small metal cabinet. Two 10,000-volt capacitors, a neon bulb, and a fixed and variable resistor for attenuating and limiting the high-voltage pulses from the spark plug were similarly mounted in another metal box. Phono jacks on the boxes allowed them to be connected together by a short piece of RG-58/U coaxial cable. Another length of cable connected the multivibrator unit to the meter, which was shock-mounted on a bracket designed to clamp on the steering column.

"Well," Carl said as he surveyed the completed tachometer, "I guess we're ready to mount it in the car and calibrate it."

"We calibrate it first and then mount it in the car," Jerry corrected him. "Trot out the sine- and square-wave generator and connect it to the input of the multivibrator circuit while I set up the 'scope."

Carl did as instructed, then watched as Jerry ran leads from the output of the audio generator to the vertical input terminals of the oscilloscope and connected the 60-cycle test voltage terminal on the 'scope to the ungrounded horizontal input terminal.

"Here's my idea - double-check me and see if I'm wrong," Jerry said. "Our 0-50 μa. meter will indicate 0 - 5000 rpm. That means 48 μa. must correspond to 4800 rpm. This reading should be produced when the multi vibrator is receiving 2400 pulses per minute, or 40 pulses per second.

"Our square-wave generator should put out a pulse that will trigger the multivibrator in the same fashion that the attenuated pulse from a spark plug does," he continued. "All we have to do is adjust the calibrating resistor of the tachometer so that the meter reads 48 μa. when the multivibrator is being fed a square-wave signal of 40 cps. We can double-check the linearity with square waves of 30 and 20 cps. They should produce readings of 3600 and 2400 rpm respectively."

"Sounds okay to me," Carl agreed, "but how are you going to be sure you have exactly 40 cycles from the generator? The dial calibration is reasonably accurate, but you can't depend on it down to the cycle."

"That's where the 'scope comes in. We'll compare the 40-, 30-, and 20-cycle output of the generator with the 60-cycle line frequency with Lissajous figures. Watch."

Testing the tachometer - RF Cafe

Jerry turned on the 'scope and switched on the audio generator, set for sine-wave output. As he approached the 40-cycle mark on the dial, the rapidly revolving pattern of interlaced curving lines slowed down and finally stopped.

"See," Jerry said; "a line along the left side of the pattern would touch three of the loops while a line across the top would touch two. That means the ratio of the signal generator frequency to the line frequency is 2:3 or 40:60."

When the generator was putting out exactly 30 cycles, two loops of the pattern touched the imaginary vertical line and only one touched the horizontal line. At 20 cycles, only one loop still touched the horizontal line, but three loops touched the vertical line.

Jerry went back to the 40-cycle frequency and switched the generator over to square-wave output. As he did so, the distorted pattern began to wiggle, showing that the change in output had caused the generator frequency to shift slightly. A touch of the generator tuning knob stopped the pattern again. Jerry reduced the generator output until the meter indication began to fall off and move erratically; then he increased the output until the reading was stationary.

"Okay, now set the calibrate control for a 48-μa. reading," he instructed Carl. When this was done and the generator set exactly for a 30-cycle output, the meter read 36 μa. When the frequency was reduced to 20 cycles, the reading dropped to 24 μa.

"Right on the money!" Jerry gloated as he grinned across at his pal. "The thing is certainly linear over the top half of the scale at any rate. Disconnect that six-volt lantern battery, and let's install the gadget in the car."

The multivibrator unit was bolted to the metal body of the car up under the dash, the attenuator unit was mounted on the front of the firewall in the engine compartment, and the connecting coax cable was run through a small hole in the partition. Connections were made to the rear spark plug and to the cold side of the ignition switch so that the tachometer would be switched on with the ignition. When everything was connected, the boys started the motor. Then they adjusted the variable resistor in the attenuator unit until the meter gave a steady and unvarying indication at a constant engine speed, and moved up and down smoothly as the motor was speeded up and slowed down.

"Well, it seems to be all right, but I still would like to be sure the indication is accurate at slow speeds," Jerry fretted. "We both know bottom-of-the-scale meter readings are often less dependable than those shown in the top half of the scale."

Working under the hood of Carl and Jerry's shared car - RF Cafe

"Maybe so, but since our square-wave generator won't go below 20 cycles, it looks as though 2400 rpm is the lowest engine speed we know is accurate," Carl observed.

"Wait a doggoned minute!" Jerry suddenly exclaimed, clapping an open palm to his forehead. "When the engine is running 400 rpm, the tachometer is receiving 200 shots a minute from a single spark plug. And since all six plugs fire once every two revolutions, the coil is putting out 6 x 200 or 1200 shots a minute, right?"


"And when the tachometer is receiving 1200 pulses per minute, it reads 2400 rpm. Can you see where I'm heading?"

"Yeah, I sure can. All we have to do is connect the pickup of the tachometer to the hot lead from the ignition coil and adjust the idle until we get an indication of 2400 rpm. Then we reconnect the pickup to a single spark plug, and if the meter action is linear we should get a reading of 400 rpm."

"And 400 rpm is very close to the slowest speed we'll need to read. So if the meter indicates correctly there, we can depend on it over the whole scale."

The lead from the coil to the distributor was arranged so that a temporary connection could be made to it. Then Jerry adjusted the idle screw until 2400 rpm was indicated on the meter. Next, he used a pair of plastic photography tongs to transfer the input connection of the tachometer from the high-tension terminal of the coil to a spark plug.

"What does it read?" he called to Carl. "It might be just a freckle low," Carl said slowly as he peered closely at the meter, "but it's so close to 4 μa. that you can't tell the difference."

"Good!" Jerry said with satisfaction.

"We certainly went to a lot of trouble to make sure this thing was telling us the truth," Carl observed, turning off the ignition.

"When it comes to test equipment of any kind, either you have confidence in it or it's no good," Jerry remarked. "The time a technician takes to make sure his instruments are accurate is never wasted. Working with a meter whose readings you're not sure of is like using a rubber ruler to build a house. But now I've got the connection back on the spark plug, so what say we taxi around a bit with our tachometer?"

"Be my guest!" Carl said, and he opened the car door for his friend.

Carl & Jerry Episodes on RF Cafe

Carl Anderson and Jerry Bishop were two teenage boys whose love of electronics, Ham radio, and all things technical afforded them ample opportunities to satisfy their own curiosities, assist law enforcement and neighbors with solving problems, and impressing – and sometimes toying with - friends based on their proclivity for serious undertakings as well as fun.

 - See Full List - 

Carl & Jerry, by John T. Frye - RF CafeCarl & Jerry, by John T. Frye

Carl and Jerry Frye were fictional characters in a series of short stories that were published in Popular Electronics magazine from the late 1950s to the early 1970s. The stories were written by John T. Frye, who used the pseudonym "John T. Carroll," and they followed the adventures of two teenage boys, Carl Anderson and Jerry Bishop, who were interested in electronics and amateur radio.

In each story, Carl and Jerry would encounter a problem or challenge related to electronics, and they would use their knowledge and ingenuity to solve it. The stories were notable for their accurate descriptions of electronic circuits and devices, and they were popular with both amateur radio enthusiasts and young people interested in science and technology.

The Carl and Jerry stories were also notable for their emphasis on safety and responsible behavior when working with electronics. Each story included a cautionary note reminding readers to follow proper procedures and safety guidelines when handling electronic equipment.

Although the Carl and Jerry stories were fictional, they were based on the experiences of the author and his own sons, who were also interested in electronics and amateur radio. The stories continue to be popular among amateur radio enthusiasts and electronics hobbyists, and they are considered an important part of the history of electronics and technology education.

Carl & Jerry Their Complete Adventures from Popular Electronics: 5 Volume Set - RF CafeCarl & Jerry: Their Complete Adventures is now available. "From 1954 through 1964, Popular Electronics published 119 adventures of Carl Anderson and Jerry Bishop, two teen boys with a passion for electronics and a knack for getting into and out of trouble with haywire lash-ups built in Jerry's basement. Better still, the boys explained how it all worked, and in doing so, launched countless young people into careers in science and technology. Now, for the first time ever, the full run of Carl and Jerry yarns by John T. Frye are available again, in five authorized anthologies that include the full text and all illustrations."



Posted September 21, 2020
(updated from original post on 7/22/2014)

TotalTemp Technologies (Thermal Platforms) - RF Cafe
PCB Directory (Manufacturers)

Exodus Advanced Communications Best in Class RF Amplifier SSPAs

LadyBug RF Power Sensors