Search RFCafe.com                           
      More Than 17,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils Visio | RF Symbols Visio
RF Symbols Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits

withwave microwave devices - RF Cafe



RF Electronics Shapes, Stencils for Office, Visio by RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Anatech Electronics RF Microwave Filters - RF Cafe

Filter Equivalent Noise Bandwidth

A filter's equivalent noise bandwidth (EqNBW) is the bandwidth that an ideal filter (infinite rejection in the stopband) of the same bandwidth would have. EqNBW is calculated by integrating the total available noise power under the response curve from 0 Hz to infinity Hz. In practice, integration only needs to be carried out to about the point of thermal noise. The steeper the filter skirts (higher order), the narrower the range of integration needed to get an acceptable approximation. Integration needs to be done in linear terms of power (mW, W, etc.) rather than in dB.

The values in the following table are for normalized lowpass filter functions with infinite Q and exact conformance to design equations. If you need a better estimation than what is presented here, then a sophisticated system simulator is necessary.

Butterworth

(fco = 3 dB)

Chebyshev

(fco = ripple)

Bessel

(fco = 3 dB)

Order EqNBW
1 1.5708
2 1.1107
3 1.0472
4 1.0262
5 1.0166
6 1.0115
7 1.0084
8 1.0065
9 1.0051
10 1.0041
Ripple 0.01 dB 0.1 dB 0.25 dB 0.5 dB 1.0 dB
Order
2 3.6672 2.1444 1.7449 1.4889 1.2532
3 1.9642 1.4418 1.2825 1.1666 1.0411
4 1.5039 1.2326 1.1405 1.0656 0.9735
5 1.3114 1.1417 1.0780 1.0208 0.9433
6 1.2120 1.0937 1.0448 0.9970 0.9272
7 1.1537 1.0653 1.0251 0.9828 0.9175
8 1.1166 1.0471 1.0125 0.9736 0.91133
9 1.0914 1.0347 1.0038 0.9674 0.9071
10 1.0736 1.0258 0.9977 0.9629 0.9041
Order EqNBW
1 1.57
2 1.56
3 1.08
4 1.04
5 1.04
6 1.04

Reference: Filter Design, by Steve Winder

Anatech Electronics RF Microwave Filters - RF Cafe
Innovative Power Products Cool Chip Thermal Dissipation - RF Cafe



Axiom Test Equipment - RF Cafe