Search RFC: |                                     
Please support my efforts by advertising!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!

Aegis Power | Centric RF | RFCT
Alliance Test | Empower RF
Isotec | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


About | Sitemap
Homepage Archive

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

Please support RF  Cafe's GoFundMe campaign! Software: RF Cascade Workbook | Espresso Engineering Workbook
RF Stencils for Visio | RF Symbols for Visio | RF Symbols for Office | Cafe Press
KR Electronics (RF Filters) - RF Cafe



dB Control dB-9006 Magnum Opus Synthesizer - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Werbel Microwave (power dividers, couplers)

Filter Equivalent Noise Bandwidth

A filter's equivalent noise bandwidth (EqNBW) is the bandwidth that an ideal filter (infinite rejection in the stopband) of the same bandwidth would have. EqNBW is calculated by integrating the total available noise power under the response curve from 0 Hz to infinity Hz. In practice, integration only needs to be carried out to about the point of thermal noise. The steeper the filter skirts (higher order), the narrower the range of integration needed to get an acceptable approximation. Integration needs to be done in linear terms of power (mW, W, etc.) rather than in dB.

The values in the following table are for normalized lowpass filter functions with infinite Q and exact conformance to design equations. If you need a better estimation than what is presented here, then a sophisticated system simulator is necessary.

Butterworth

(fco = 3 dB)

Chebyshev

(fco = ripple)

Bessel

(fco = 3 dB)

Order EqNBW
1 1.5708
2 1.1107
3 1.0472
4 1.0262
5 1.0166
6 1.0115
7 1.0084
8 1.0065
9 1.0051
10 1.0041
Ripple 0.01 dB 0.1 dB 0.25 dB 0.5 dB 1.0 dB
Order
2 3.6672 2.1444 1.7449 1.4889 1.2532
3 1.9642 1.4418 1.2825 1.1666 1.0411
4 1.5039 1.2326 1.1405 1.0656 0.9735
5 1.3114 1.1417 1.0780 1.0208 0.9433
6 1.2120 1.0937 1.0448 0.9970 0.9272
7 1.1537 1.0653 1.0251 0.9828 0.9175
8 1.1166 1.0471 1.0125 0.9736 0.91133
9 1.0914 1.0347 1.0038 0.9674 0.9071
10 1.0736 1.0258 0.9977 0.9629 0.9041
Order EqNBW
1 1.57
2 1.56
3 1.08
4 1.04
5 1.04
6 1.04

Reference: Filter Design, by Steve Winder

Werbel Microwave (power dividers, couplers)