Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising Magazine Sponsor RF Cafe RF Electronics Symbols for Visio RF Electronics Symbols for Office Word RF Electronics Stencils for Visio Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Anritsu Alliance Test Equipment Amplifier Solutions Anatech Electronics Axiom Test Equipment Berkeley Nucleonics Bittele Centric RF Conduct RF Copper Mountain Technologies Empower RF everything RF Exodus Advanced Communications Innovative Power Products ISOTEC KR Filters Lotus Systems PCB Directory Rigol San Francisco Circuits Reactel RFCT TotalTemp Technologies Triad RF Systems Windfreak Technologies Withwave LadyBug Technologies Wireless Telecom Group Sponsorship Rates RF Cafe Software Resources Vintage Magazines Thank you for visiting RF Cafe!
Innovative Power Products Couplers

Monolithic Ceramic Block Combline Bandpass Filters Design

The following article was submitted to RF Cafe by its author, Darioush Agahi. It originally appeared in the March 1989 edition of RF Design. Since RF Design's online archives only go back about seven or eight years, this article has long ago disappeared from existence for all except the most ardent magazine collectors (aka packrats). Mr. Agahi is now an engineer for Skyworks.

Monolithic Ceramic Block Combline Bandpass Filters

By Darioush Agahi

     Motorola, Inc.

Small size and ruggedness are two important factors in the selection of bandpass filters for military and OEM applications. Monolithic ceramic block combline bandpass filters not only offer a size advantage in UHF through L-band frequencies; they also have other characteristics that make them extremely attractive when compared to other technologies. The filters are characteristically lower in cost and have relatively good insertion loss due to their high Q material (Q>10,000). This paper describes the design technique used for ceramic bandpass filters.

The procedure for designing ceramic bandpass filters is straightforward and relies on standard filter theory. It is only in the construction stage of the

realization that the structure becomes unique and the commercial attractiveness becomes apparent. A design example is provided here together with an equivalent circuit for a Chebyshev equal-ripple filter constructed with a material possessing a dielectric constant of 37. Ceramic materials with low loss tangents (67 x 10-6) and high dielectric constants (37 and 78) provide a means to create small coaxial structures which could be coupled to form combline bandpass filters. The sketch in Figure 1 shows the basic foreshortened quarter-wavelength coaxial resonator structure. The resulting filters are compact, rugged devices with low insertion loss in bandwidths of 0.5 to 6 percent. It is also possible to realize transmission zeros in these devices and structures.

Design Procedure

The design procedure for these combline filters is based on papers by Matthaei (1) and Cristal (2) which include descriptions of the physical structures required for their realization. It is necessary to determine the order of a filter based on a given bandwidth, rejection, loss, etc. Using Reference 1, a low pass to bandpass transformation is performed.

For a Chebyshev response, n is obtained from:

RF Cafe - Monolithic Ceramic Block Combline Bandpass Filters Design Equation

Since n cannot be a fraction, it will be rounded up to the next highest integer. Once n is calculated, the low pass prototype element values (or g values) are obtained (1). Using the above information, coupling coefficients are given by (1):

To excite the TEM mode, resonators are located in close proximity to one another. In doing that they become electromagnetically coupled via their associated electric and magnetic fields. While designing such devices, the desired degree of coupling is usually known, and it is required in order to determine the spacing necessary to achieve this coupling. By using coupling coefficients (from equation 4), Reference 2, and transmission line theory, coupling coefficients are adjusted.

RF Cafe - Monolithic Ceramic Block Combline Bandpass Filters Design 1



RF Cafe - Monolithic Ceramic Block Combline Bandpass Filters Design 2


RF Cafe - Monolithic Ceramic Block Combline Bandpass Filters Design 3

RF Cafe - Monolithic Ceramic Block Combline Bandpass Filters Design 4

RF Cafe - Monolithic Ceramic Block Combline Bandpass Filters Design 5

RF Cafe - Monolithic Ceramic Block Combline Bandpass Filters Design 6

RF Cafe - Monolithic Ceramic Block Combline Bandpass Filters Design 7

Related Pages on RF Cafe

- How to Use Filter Equations in a Spreadsheet

- Filter Transfer Functions

- Filter Equivalent Noise Bandwidth

- Filter Prototype Denormalization

- Bessel Filter Poles

- Bessel Filter Prototype Element Values

- Butterworth Lowpass Filter Poles

- Butterworth Filter Prototype Element Values

- Chebyshev Lowpass Filter Poles

- Chebyshev Filter Prototype Element Values

- Monolithic Ceramic Block Combline Bandpass

  Filters Design

- Coupled Microstrip Filters: Simple Methodologies for

  Improved Characteristics

Exodus Advanced Communications Best in Class RF Amplifier SSPAs
RF Electronics Shapes, Stencils for Office, Visio by RF Cafe
Axiom Test Equipment - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free


About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024


    Kirt Blattenberger,


RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website: