Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising Magazine Sponsor RF Cafe RF Electronics Symbols for Visio RF Electronics Symbols for Office Word RF Electronics Stencils for Visio Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Anritsu Alliance Test Equipment Amplifier Solutions Anatech Electronics Axiom Test Equipment Berkeley Nucleonics Centric RF Conduct RF Copper Mountain Technologies Empower RF everything RF Exodus Advanced Communications Innovative Power Products ISOTEC KR Filters Lotus Systems PCB Directory Rigol San Francisco Circuits Reactel RFCT TotalTemp Technologies Triad RF Systems Windfreak Technologies Withwave LadyBug Technologies Wireless Telecom Group Sponsorship Rates RF Cafe Software Resources Vintage Magazines Thank you for visiting RF Cafe!

Butterworth Lowpass Filter Poles

Butterworth poles lie along a circle and are spaced at equal angular distances around a circle. It is designed to have a frequency response which is as flat as mathematically possible in the passband, and is often referred to as a 'maximally flat magnitude' filter. Prototype value real and imaginary pole locations (ω=1 at the 3 dB cutoff point) for Butterworth filters are presented in the table below.

The Butterworth type filter was first described by the British engineer Stephen Butterworth in his paper "On the Theory of Filter Amplifiers", Wireless Engineer (also called Experimental Wireless and the Wireless Engineer), vol. 7, 1930, pp. 536-541.

See my online filter calculators and plotters here.

Butterworth filter prototype element values are here.

Pole locations are calculated as follows, where K=1,2,...,n.   n is the filter order.

Butterworth filter poles equation - RF Cafe

The Butterworth polynomials may be written in complex form as above, but are usually written with real coefficients by multiplying pole pairs which are complex conjugates, such as s1 and sn. The polynomials are normalized by setting ωc = 1.

The normalized Butterworth polynomial equations have the general form:

RF Cafe: Butterworth filter equation - n even

RF Cafe: Butterworth filter equation - n odd

n Factors of Polynomial Bn(s)
1 (s + 1)
2 (s2 + 1.4142s + 1)
3 (s + 1)(s2 + s + 1)
4 (s2 + 0.7654s + 1)(s2 + 1.8478s + 1)
5 (s + 1)(s2 + 0.6180s + 1)(s2 + 1.6180s + 1)
6 (s2 + 0.5176s + 1)(s2 + 1.4142s + 1)(s2 + 1.9319s + 1)
7 (s + 1)(s2 + 0.4450s + 1)(s2 + 1.2470s + 1)(s2 + 1.8019s + 1)
8 (s2 + 0.3902s + 1)(s2 + 1.1111s + 1)(s2 + 1.6629s + 1)(s2 + 1.9616s + 1)
Order (n) Re Part (-σ) Im Part (±jω)
1 1.0000  
2 0.7071 0.7071
3 0.5000

1.0000

0.8660
4 0.9239

0.3827

0.3827

0.9239

5 0.8090

0.3090

1.0000

0.5878

0.9511

6 0.9659

0.7071

0.2588

0.2588

0.7071

0.9659

7 0.9010

0.6235

0.2225

1.0000

0.4339

0.7818

0.9749

8 0.9808

0.8315

0.5556

0.1951

0.1951

0.5556

0.8315

0.9808

9 0.9397

0.7660

0.5000

0.1737

1.0000

0.3420

0.6428

0.8660

0.9848

10 0.9877

0.8910

0.7071

0.4540

0.1564

0.1564

0.4540

0.7071

0.8910

0.9877

Filter Design by Steve Winder - RF CafeData taken from "Filter Design," by Steve Winder, Newnes Press, 1998. This is a great filter design book, and I recommend you purchase a copy of it.

 

Related Pages on RF Cafe

- How to Use Filter Equations in a Spreadsheet

- Filter Transfer Functions

- Filter Equivalent Noise Bandwidth

- Filter Prototype Denormalization

- Bessel Filter Poles

- Bessel Filter Prototype Element Values

- Butterworth Lowpass Filter Poles

- Butterworth Filter Prototype Element Values

- Chebyshev Lowpass Filter Poles

- Chebyshev Filter Prototype Element Values

- Monolithic Ceramic Block Combline Bandpass

  Filters Design

- Coupled Microstrip Filters: Simple Methodologies for

  Improved Characteristics

Holzworth
RF Cascade Workbook 2018 by RF Cafe
Exodus Advanced Communications Best in Class RF Amplifier SSPAs
Amplifier Solutions Corporation (ASC) - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free

 

About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024

Webmaster:

    Kirt Blattenberger,

    BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:

AirplanesAndRockets.com