Search RFC: |                                     
Please support my efforts by advertising!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!

Aegis Power | Centric RF | RFCT
Alliance Test | Empower RF
Isotec | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


About | Sitemap
Homepage Archive

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

Please support RF  Cafe's GoFundMe campaign! Software: RF Cascade Workbook | Espresso Engineering Workbook
RF Stencils for Visio | RF Symbols for Visio | RF Symbols for Office | Cafe Press
RF Cascade Workbook 2018 - RF Cafe

Left-Hand Rule of Electricity

Electronics & Technology
- See Full List of AI Topics -

The left-hand rule of electricity is a fundamental concept in physics and electrical engineering that is used to determine the direction of the force on a current-carrying conductor in a magnetic field. It is based on the relationship between the direction of the magnetic field and the direction of the current flow.

The left-hand rule of electricity states that if you point your left thumb in the direction of the current flow and your left fingers in the direction of the magnetic field, the direction of the force on the conductor can be determined by the direction of your extended palm. Specifically, if the palm is facing upwards, the direction of the force will be in the opposite direction to the current; if the palm is facing downwards, the direction of the force will be in the same direction as the current.

This rule is important because the interaction between electric currents and magnetic fields is the basis for many important applications in electrical engineering, such as electric motors, generators, and transformers. The direction of the force on a current-carrying conductor in a magnetic field can also affect the behavior of nearby conductors, and can be used to control the flow of electric current.

The left-hand rule of electricity is related to another important concept in physics, known as the right-hand rule of electricity. The right-hand rule of electricity is used to determine the direction of the magnetic field around a current-carrying conductor, based on the direction of the current flow.

While the left-hand rule of electricity may seem like a simple concept, it is a crucial tool for understanding the behavior of electric and magnetic fields. By using this rule to determine the direction of the force on a conductor in a magnetic field, electrical engineers and physicists can design and optimize a wide range of electrical systems and devices.


AI Competition: ChatGPT-Gemini-Grok 3, GabAI - RF CafeThis content was generated by primarily the ChatGPT (OpenAI), and/or Gemini (Google), and/or Arya (GabAI), and/or Grok (x.AI), and/or DeepSeek artificial intelligence (AI) engine. Some review was performed to help detect and correct any inaccuracies; however, you are encouraged to verify the information yourself if it will be used for critical applications. In some cases, multiple solicitations to the AI engine(s) was(were) used to assimilate final content. Images and external hyperlinks have also been added occasionally. Courts have ruled that AI-generated content is not subject to copyright restrictions, but since I modify them, everything here is protected by RF Cafe copyright. Many of the images are likewise generated and modified. Your use of this data implies an agreement to hold totally harmless Kirt Blattenberger, RF Cafe, and any and all of its assigns. Thank you. Here are the major categories.

AI Technical Trustability Update

While working on an update to my RF Cafe Espresso Engineering Workbook project to add a couple calculators about FM sidebands (available soon). The good news is that AI provided excellent VBA code to generate a set of Bessel function plots. The bad news is when I asked for a table showing at which modulation indices sidebands 0 (carrier) through 5 vanish, none of the agents got it right. Some were really bad. The AI agents typically explain their reason and method correctly, then go on to produces bad results. Even after pointing out errors, subsequent results are still wrong. I do a lot of AI work and see this often, even with subscribing to professional versions. I ultimately generated the table myself. There is going to be a lot of inaccurate information out there based on unverified AI queries, so beware.

Electronics & High Tech Companies | Electronics & Tech Publications | Electronics & Tech Pioneers | Electronics & Tech Principles | Tech Standards Groups & Industry Associations | Societal Influences on Technology

RF Cascade Workbook 2018 - RF Cafe
ConductRF Phased Matched RF Cables - RF Cafe

Crane Aerospace Electronics Microwave Solutions