Search RFC: |                                     
Please support my efforts by advertising!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!

Aegis Power | Centric RF | RFCT
Alliance Test | Empower RF
Isotec | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


About | Sitemap
Homepage Archive

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

Please support RF  Cafe's GoFundMe campaign! Software: RF Cascade Workbook | Espresso Engineering Workbook
RF Stencils for Visio | RF Symbols for Visio | RF Symbols for Office | Cafe Press
Innovative Power Products (IPP) RF Combiners / Dividers

Beta Decay

Electronics & Technology
- See Full List of AI Topics -

Beta decay is a type of nuclear decay that occurs when an unstable nucleus emits an electron (or a positron) and a neutrino (or an antineutrino). This process is governed by the weak force, which is one of the four fundamental forces of nature.

There are two types of beta decay: beta-minus (β-) decay and beta-plus (β+) decay. In beta-minus decay, a neutron in the nucleus is converted into a proton, and an electron and an antineutrino are emitted. The atomic number of the nucleus increases by one, while the mass number remains the same. An example of beta-minus decay is the decay of carbon-14 (14C) to nitrogen-14 (14N):

14C → 14N + β- + ν̅e

In beta-plus decay, a proton in the nucleus is converted into a neutron, and a positron and a neutrino are emitted. The atomic number of the nucleus decreases by one, while the mass number remains the same. An example of beta-plus decay is the decay of fluorine-18 (18F) to oxygen-18 (18O):

18F → 18O + β+ + ve

Beta decay plays an important role in the universe, as it is responsible for the synthesis of elements in stars. For example, in the proton-proton chain that powers the sun, two protons combine to form a deuterium nucleus (a proton and a neutron), which then undergoes beta-plus decay to form a helium-3 nucleus (two protons and a neutron), a positron, and a neutrino:

p + p → D + e+ + νe D → 3He + β+ + ν̅e

Beta decay is also used in a variety of applications, including nuclear power generation, medical imaging, and radiation therapy. In nuclear power plants, beta decay is used to produce heat by converting the energy released during the decay of radioactive isotopes into electrical energy. In medical imaging, beta-emitting isotopes are used as tracers to track the movement of molecules in the body. In radiation therapy, beta-emitting isotopes are used to destroy cancerous cells by depositing energy directly into the cells.


AI Competition: ChatGPT-Gemini-Grok 3, GabAI - RF CafeThis content was generated by primarily the ChatGPT (OpenAI), and/or Gemini (Google), and/or Arya (GabAI), and/or Grok (x.AI), and/or DeepSeek artificial intelligence (AI) engine. Some review was performed to help detect and correct any inaccuracies; however, you are encouraged to verify the information yourself if it will be used for critical applications. In some cases, multiple solicitations to the AI engine(s) was(were) used to assimilate final content. Images and external hyperlinks have also been added occasionally. Courts have ruled that AI-generated content is not subject to copyright restrictions, but since I modify them, everything here is protected by RF Cafe copyright. Many of the images are likewise generated and modified. Your use of this data implies an agreement to hold totally harmless Kirt Blattenberger, RF Cafe, and any and all of its assigns. Thank you. Here are the major categories.

AI Technical Trustability Update

While working on an update to my RF Cafe Espresso Engineering Workbook project to add a couple calculators about FM sidebands (available soon). The good news is that AI provided excellent VBA code to generate a set of Bessel function plots. The bad news is when I asked for a table showing at which modulation indices sidebands 0 (carrier) through 5 vanish, none of the agents got it right. Some were really bad. The AI agents typically explain their reason and method correctly, then go on to produces bad results. Even after pointing out errors, subsequent results are still wrong. I do a lot of AI work and see this often, even with subscribing to professional versions. I ultimately generated the table myself. There is going to be a lot of inaccurate information out there based on unverified AI queries, so beware.

Electronics & High Tech Companies | Electronics & Tech Publications | Electronics & Tech Pioneers | Electronics & Tech Principles | Tech Standards Groups & Industry Associations | Societal Influences on Technology

Innovative Power Products (IPP) RF Combiners / Dividers
Innovative Power Products Cool Chip Thermal Dissipation - RF Cafe

ConductRF Phased Matched RF Cables - RF Cafe