Search RFC: |                                     
Please support my efforts by advertising!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!

Aegis Power | Centric RF | RFCT
Alliance Test | Empower RF
Isotec | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please DONATE

RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering WorkbookCafe Press
Transcat | Axiom Rental Equipment - RF Cafe

Human Body Model (HBM) ESD Testing

Electronics & Technology
- See Full List of AI Topics -

Human Body Model (HBM) ESDA - RF Cafe

The "Human Body Model" (HBM) for electrostatic discharge (ESD) testing is a standard method used to assess the susceptibility of electronic components and devices to ESD events caused by human contact. The HBM simulates the electrostatic discharge that can occur when a person touches or handles a device.  The HBM test is designed to determine the ESD vulnerability of electronic components and devices when they come into contact with a charged human body. It helps identify potential weaknesses in a product's design and manufacturing with respect to ESD protection.

HBM testing follows standardized procedures and guidelines, typically defined in industry standards like JEDEC (Joint Electron Device Engineering Council) and the ESD Association (ESDA) standards. Commonly used standards include JEDEC JESD22-A114 and ESDA-STM5.1. The HBM test setup involves the use of a human body model simulator, which typically consists of a capacitor discharge tool. The tool is charged to a specified voltage (e.g., 1000 volts or more) to simulate an electrostatic discharge.

During the test, a charged discharge tool is brought into contact with the device under test (DUT). The discharge mimics the ESD event that can occur when a person touches the device or one of its electrical connectors. The DUT's response to the ESD event is monitored. HBM test levels are specified in the relevant standards and represent the maximum voltage to which the device is exposed during testing. Typical levels range from 1 kV to 8 kV, but the specific level depends on the application and industry requirements. The test evaluates whether the device survives the ESD event without experiencing functional or electrical failures. The pass/fail criteria depend on the product's intended use and the specific standard being followed. Factors such as device sensitivity, materials used, and the device's design can influence the test results. Manufacturers may need to apply various protective measures to ensure their products meet ESD protection requirements.

Manufacturers use the results of HBM testing to improve the design and construction of their products. This may include incorporating ESD protection circuits and ensuring proper grounding. HBM testing is critical for ensuring the reliability and performance of electronic devices in real-world scenarios where they may come into contact with humans.


AI Competition: ChatGPT-Gemini-Grok 3, GabAI - RF CafeThis content was generated by primarily the ChatGPT (OpenAI), and/or Gemini (Google), and/or Arya (GabAI), and/or Grok (x.AI), and/or DeepSeek artificial intelligence (AI) engine. Some review was performed to help detect and correct any inaccuracies; however, you are encouraged to verify the information yourself if it will be used for critical applications. In some cases, multiple solicitations to the AI engine(s) was(were) used to assimilate final content. Images and external hyperlinks have also been added occasionally. Courts have ruled that AI-generated content is not subject to copyright restrictions, but since I modify them, everything here is protected by RF Cafe copyright. Many of the images are likewise generated and modified. Your use of this data implies an agreement to hold totally harmless Kirt Blattenberger, RF Cafe, and any and all of its assigns. Thank you. Here are the major categories.

AI Technical Trustability Update

While working on an update to my RF Cafe Espresso Engineering Workbook project to add a couple calculators about FM sidebands (available soon). The good news is that AI provided excellent VBA code to generate a set of Bessel function plots. The bad news is when I asked for a table showing at which modulation indices sidebands 0 (carrier) through 5 vanish, none of the agents got it right. Some were really bad. The AI agents typically explain their reason and method correctly, then go on to produces bad results. Even after pointing out errors, subsequent results are still wrong. I do a lot of AI work and see this often, even with subscribing to professional versions. I ultimately generated the table myself. There is going to be a lot of inaccurate information out there based on unverified AI queries, so beware.

Electronics & High Tech Companies | Electronics & Tech Publications | Electronics & Tech Pioneers | Electronics & Tech Principles | Tech Standards Groups & Industry Associations | Societal Influences on Technology

Transcat | Axiom Rental Equipment - RF Cafe