Left Border Content - RF Cafe
RF Cascade Workbook 2018 by RF Cafe
LadyBug Technologies LB5944A RF Power Sensor - RF Cafe
 

About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024
Webmaster:
    Kirt Blattenberger,

    BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while typing up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:

AirplanesAndRockets.com

Header Region - RF Cafe
Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes App Notes Calculators Education Engineering magazine articles Engineering software Engineering smorgasbord RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising RF Cafe Homepage Thank you for visiting RF Cafe!
Sub-Header - RF Cafe everythingRF RF & Microwave Parts Database (h2) - RF Cafe

Bell Telephone Laboratories Advertisement
January 1954 Radio & Television News Article

January 1954 Radio & TV News
January 1954 Radio & Television News Cover - RF Cafe[Table of Contents]

Wax nostalgic about and learn from the history of early electronics. See articles from Radio & Television News, published 1919-1959. All copyrights hereby acknowledged.

GeAs (germanium and arsenic) was the semiconductor substrate material of choice long before the III-V series like GaN and GaAs came along. GeAs would be considered a III-IV semiconductor since Ge is in group IV of the periodic table (Ga is group III, As is group V). It is actually know simply as germanium. 1954, when this advertisement from Bell Telephone Laboratories appeared in Radio & Television News magazine, was the same year that Texas Instruments (TI) introduced the world's first commercially available silicon (Si) transistor. The GeAs boule photo in the ad was printed "life size," which makes it around 2" in diameter. Compare that to 12" diameter wafers standard today for Si. Gallium nitride (GaN), a more exotic high frequency, high temperature semiconductor compound, just recently grew (literally) beyond a 2" diameter boule size where it had been stuck for a decade. Individual device sizes have decreased while wafer sizes have increased, so the number of devices per wafer is way up and the cost per device is way down.

Bell Telephone Laboratories Ad

Bell Telephone Laboratories Ad, January 1954 Radio & Television News - RF CafeGermanium crystal grown at Bell Telephone Laboratories (life size). It is sliced into hundreds of minute pieces to make Transistors. Transistor action depends on the flow of positive current-carriers as well as electrons, which are negative. Arsenic - a few parts per 100,000,000 - added to germanium produces prescribed excess of electrons. With gallium added, positive carriers predominate. Latest junction type Transistor uses both kinds of germanium in the form of a sandwich.

They Grew it for Transistors

Heart of a Transistor - Bell Telephone Laboratories' new pea-size amplifier - is a tiny piece of germanium. If Transistors are to do their many jobs well, this germanium must be of virtually perfect crystalline structure and uniform chemical composition. But it doesn't come that way in nature.

So - Bell scientists devised a new way to grow the kind of crystals they need, from a melt made of the natural product. By adding tiny amounts of special alloying substances to the melt, they produce germanium that is precisely tailored for specific uses in the telephone system.

This original technique is another example of the way Bell Laboratories makes basic discoveries - in this case the Transistor itself - and then follows up with practical ways to make them work for better telephone service.

Section of natural germanium, left, shows varying crystal structure. At right is sectioned single crystal grown at Bell Laboratories.

Improving Telephone Service for America Provides Careers for Creative Men in Scientific and Technical Fields

Bell Telephone Laboratories

 

 

Posted July 6, 2015

Footer - RF Cafe RIGOL Technologies (electronics test equipment) - RF Cafe
Right Border Content - RF Cafe
ConductRF Phased Matched RF Cables - RF Cafe
Berkeley Nucleonics Model 855B Signal Generator - RF Cafe
 

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free