Search RFC: |                                     
Please support my efforts by ADVERTISING!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!
RF Cafe Sponsors
Aegis Power | Centric RF | RFCT
Alliance Test | Empower RF
Isotec | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

kmblatt83@aol.com

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please Donate
RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering Workbook
Crane Aerospace & Electronics (RF & Microwave) - RF Cafe

Bessel Functions & Graphs

Bessel function graph - RF CafeBessel functions of the first kind are shown in the graph below. In frequency modulation (FM), the carrier and sideband frequencies disappear when the modulation index (β) is equal to a zero crossing of the function for the nth sideband. For example, the carrier (0th sideband) disappears when the Jn(0,β) plot equals zero. It is this feature that broadcasters exploit to suppress the carrier rather than simply inserting a bandstop filter between the transmitter and the antenna.

Using a filter greatly reduces the efficiency of the system since the power amplifier is outputting the carrier signal only to have it shorted to ground via the filter. Adjusting the modulation index to the proper value causes all of the output power to be concentrated in the usable signal, thus increasing efficiency. See FM. The 1st sideband disappears when the Jn(1,β) plot equals zero, the 2nd sideband disappears when the Jn(2,β) equals zero, etc., etc. Graph generated using RF Cafe's Espresso Engineering Workbook.

Bessel filter pole values can be found here. Bessel filter prototype values can be found here.

Sample of Bessel Function Zero Crossings
J0(β)

J1(β)

J2(β)

J3(β)

J4(β)

J5(β)

J6(β)

β = 2.40
β = 5.49
β = 8.65
β = 11.8
β = 3.83
β = 7.05
β = 10.2
β = 5.14
β = 8.42
β = 11.6
β = 6.38
β = 8.42
β = 11.6
β = 7.59
β = 11.1
β = 14.4
β = 8.77
β = 12.3
β = 15.7
β = 9.94
β = 13.6
β = 17.0

 

Related Pages on RF Cafe

- Amplitude Modulation

- Frequency Modulation

- Quadrature (I/Q) Modulator Sideband Suppression

- Bessel Functions & Graphs

- Modulation Principles, AM Modulation, NEETS

- Modulation Principles, FM Modulation, NEETS

- Modulation Principles, Demodulation, NEETS

- Frequency Mixer, Converter, Multiplier, Modulator Vendors

Crane Aerospace & Electronics (RF & Microwave) - RF Cafe