RF Cafe Software

RF Cascade Workbook 2005 - RF Cafe
RF Cascade Workbook

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2016
Webmaster:
Kirt Blattenberger,
 BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:
 AirplanesAndRockets.com

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !

Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

Electronic Warfare and Radar Systems Engineering Handbook
- RF Atmospheric Absorption / Ducting -(Title)

[Go to TOC]

 

RF ATMOSPHERIC ABSORPTION / DUCTING


Signal losses are associated with each stage of signal processing in both the transmitting and receiving portions of the system. The transmitting losses include power transmission efficiency, waveguide and antenna losses, and duplexer losses. In the receiver, losses include antenna, waveguide, RF amplifier, mixer, and IF amplifier.

In addition to these losses, energy traveling through the atmosphere suffers from atmospheric attenuation caused primarily by absorption by the gasses. For lower frequencies (below 10 GHz), the attenuation is reasonably predictable. For high frequencies in the millimeter wave range, the attenuation not only increases, but becomes more dependent upon peculiar absorbing characteristics of H2O, O2, and the like.

Figure 1 shows the areas of peak absorption in the millimeter wave spectrum. Figure 2 shows how the intensity of precipitation can affect atmospheric attenuation.

 


Atmospheric Absorption of Millimeter Waves  - RF Cafe

Figure 1. Atmospheric Absorption of Millimeter Waves



Atmospheric Attenuation - RF Cafe


Figure 2. Atmospheric Attenuation



Atmospheric Ducting - RF Cafe

Figure 3. Ducting



Ducting is an increase in range that an electromagnetic wave will travel due to a temperature inversion of the lower atmosphere (troposphere) as shown in Figure 3. The temperature inversion forms a channel or waveguide (duct) for the waves to travel in, and they can be trapped, not attenuating as would be expected from the radar equation. Ducting may also extend range beyond what might be expected from limitations of the radar horizon (see Section 2-9).

The ducting phenomena is frequency sensitive. The thicker the duct, the lower the minimum trapped frequency.

A similar occurrence takes place with ionospheric refraction, however the greatest increase in range occurs in the lower frequencies. This is familiar to amateur radio operators who are able to contact counterparts “around the world”.



Table of Contents for Electronics Warfare and Radar Engineering Handbook
Introduction | Abbreviations | Decibel | Duty Cycle | Doppler Shift | Radar Horizon / Line of Sight | Propagation Time / Resolution | Modulation | Transforms / Wavelets | Antenna Introduction / Basics | Polarization | Radiation Patterns | Frequency / Phase Effects of Antennas | Antenna Near Field | Radiation Hazards | Power Density | One-Way Radar Equation / RF Propagation | Two-Way Radar Equation (Monostatic) | Alternate Two-Way Radar Equation | Two-Way Radar Equation (Bistatic) | Jamming to Signal (J/S) Ratio - Constant Power [Saturated] Jamming | Support Jamming | Radar Cross Section (RCS) | Emission Control (EMCON) | RF Atmospheric Absorption / Ducting | Receiver Sensitivity / Noise | Receiver Types and Characteristics | General Radar Display Types | IFF - Identification - Friend or Foe | Receiver Tests | Signal Sorting Methods and Direction Finding | Voltage Standing Wave Ratio (VSWR) / Reflection Coefficient / Return Loss / Mismatch Loss | Microwave Coaxial Connectors | Power Dividers/Combiner and Directional Couplers | Attenuators / Filters / DC Blocks | Terminations / Dummy Loads | Circulators and Diplexers | Mixers and Frequency Discriminators | Detectors | Microwave Measurements | Microwave Waveguides and Coaxial Cable | Electro-Optics | Laser Safety | Mach Number and Airspeed vs. Altitude Mach Number | EMP/  Aircraft Dimensions | Data Busses | RS-232 Interface | RS-422 Balanced Voltage Interface | RS-485 Interface | IEEE-488 Interface Bus (HP-IB/GP-IB) | MIL-STD-1553 & 1773 Data Bus |
  This HTML version may be printed but not reproduced on websites.