Custom Search
Over 10000 Pages Indexed
Your Host
Click here to read about RF CafeKirt
Blattenberger

... single-
handedly
redefining
what an
engineering website
should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5CCG (5th MOB):
My USAF radar shop

Hobby & Fun

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse
riding business website -
lots of info

•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Job Board

About RF Cafe©

RF Cafe E-Mail

Electronic Warfare and Radar Systems Engineering Handbook
- Receiver Tests -

[Go to TOC]

RECEIVER TESTS



Two tone and spurious response (single signal) receiver tests should be performed on EW and radar receivers to evaluate their spurious free dynamic range. A receiver should have three ranges of performance: (1) protection from damage, (2) degraded performance permitted in the presence of a strong interfering signal(s) and no degradation when only a strong desired signal is present, and (3) full system performance.

The original MIL-STD-461A design requirement and its companion MIL-STD-462 test requirement specified four receiver tests. These standards allowed the interfering signal(s) to be both inband and out of band, which is meaningful for design and test of EW receivers, however inband testing generally is not meaningful for narrowband communications receivers. These standards were difficult to follow and had to be tailored to properly evaluate the EW and radar system. MIL-STD-461B/C still allowed the interfering signal(s) to be both inband and out of band but deleted the single signal interference test (CS08 Conducted Susceptibility test). MIL-STD-461D/-462D leave the pass/fail criteria entirely up to what is listed in the individual procurement specification. It also places all interfering signals out of band, redesignates each test number with a number "100" higher than previously used, and combines "CS08" as part of CS104. Therefore, to provide meaningful tests for EW and radar systems, the procurement specification must specify the three ranges of performance mentioned in the beginning of this section and that the tests are to be performed with the interfering signal(s) both inband and out of band. The four tests are as follows (listed in order of likelihood to cause problems):

Receiver test list - RF Cafe


The rest of this section explains the application of these tests and uses the names of the original MIL-STD- 461A tests to separate the tests by function.

Receiver Test Setup When Antenna Can Be Removed - RF CafeTEST SETUP



A directional coupler used backwards (as shown here in Figure 1) is an easy way to perform two signal tests. The CW signal should be applied to the coupling arm (port B) since the maximum CW signal level is -10 dBm. The pulse signal should be applied to the straight-through path (port C) since the maximum pulse level is +10 dBm peak. These power levels are achievable with standard laboratory signal generators, therefore one doesn't have to resort to using amplifiers which may distort the signals. Always monitor the output signal to verify spectrally pure Receiver Test Setup When Antenna Is Active - RF Cafesignals are being applied to the test unit. This can be accomplished by another directional coupler used in the standard configuration. Dissimilar joints or damaged or corroded microwave components can cause mixing. This can also result if the two signal generators are not isolated from one another. Therefore, even if a directional coupler is used to monitor the signal line, it is still advisable to directly measure the input to the receiver whenever there is a suspected receiver failure. This test does not need to be performed in an EMI shielded room and is more suitable for a radar or EW lab where the desired signals are readily available. If the receiver's antenna is active or cannot be removed, a modified test as shown in Figure 2 should be performed. The monitoring antenna which is connected to the spectrum analyzer should be the same polarization as the antenna for the receiver being tested. Amplifiers may be required for the F1 and F2 signals. It is desirable to perform this test in an anechoic chamber or in free space.

In the following discussion of CS08, CS04, CS03, and CS05 tests, it is assumed that when the receive light illuminates, the receiver identifies a signal that matches parameters in the User Data File (UDF) or pre-programmed list of emitter identification parameters. If a receiver is different, the following procedures will have to be appropriately tailored. If the UDF does not have entries for very low level signals in the 10% and 90% regions of each band, complete testing is not possible. Most problems due to higher order mixing products and adjacent band leakage are only evident in these regions. In the following tests, the lowest level where the receive light is constantly on is used to identify the minimum receive level. If a receiver has a receive level hysteresis or other idiosyncrasy, then using a 50% receive light blinking indicator may be more appropriate. Whatever technique is appropriate, it should be consistently used during the remainder of the test. The maximum frequency for testing is normally 20 GHz. If a millimeter wave receiver is being tested, the maximum frequency should be 110 GHz.


CS08 - UNDESIRED, SINGLE SIGNAL INTERFERENCE TEST



MIL-STD-461B/C (EMI design requirements) deleted this test. MIL-STD-461D allows a single signal test as part of CS104 (CS04) but specifies it as an out of band test. The original CS08 inband and out of band test is still needed and is the most meaningful test for wide band EW receivers which have a bandwidth close to an octave. This test will find false identification problems due to 1) lack of RF discrimination, 2) higher order mixing problems, 3) switch or adjacent channel/band leakage, and 4) cases where the absence of a desired signal causes the receiver to search and be more susceptible. In this latter case, a CS04 two signal test could pass because the receiver is captured by the desired signal, whereas a CS08 test could fail. Examples of the first three failures are as follows:

Frequency Areas in a Sample 2-4 GHz Receiver - RF CafeEXAMPLE 1

A 2 to 4 GHz receiver which uses video detection (e.g., crystal video) and doesn't measure RF is used for this example. This receiver assumes that if the correct Pulse Repetition Interval (PRI) is measured, it is from a signal in the frequency band of interest. Three cases can cause false identification. Refer to Figure 3.

(1) Region A&C. The 2 to 4 GHz band pass filter will pass strong signals in regions A&C. If they have the correct PRI, they will also be identified.

(2) Region B. Any other signal besides the desired signal in the 2 to 4 GHz region that has the correct PRI will also be identified as the signal of interest.

(3) Region D. Band pass filters with poor characteristics tend to pass signals with only limited attenuation at frequencies that are three times the center frequency of the band pass filter. If these signals have the correct PRI, they will be incorrectly identified.

High duty cycle signals (CW or pulse Doppler) in regions A, B, C, and D may overload the processing of signals, saturate the receiver, or desensitize the receiver. This case is really a two signal CS04 test failure and will be addressed in the CS04 section.

Low Side Mixing - RF CafeEXAMPLE 2

A receiver measuring the carrier frequency of each pulse (i.e. instantaneous frequency measurement (IFM)) and the PRI is used for this example. False signal identification can occur due to higher order mixing products showing up in the receiver pass bands. These unwanted signals result from harmonics of the input RF mixing with harmonics of the Local Oscillator (LO). Refer to Figures 4 and 5.

Mixers are nonlinear devices and yield the sum, difference, and the original signals. Any subsequent amplifier that is saturated will provide additional mixing products.

Low Side Mixing Results - RF CafeIf a 8.5 GHz signal with a 1 kHz PRI is programmed to be identified in the UDF, measurements are made at the 2.5 GHz Intermediate Frequency (IF), i.e., RF-LO = IF = 8.5-6 = 2.5 GHz.

The same 2.5 GHz signal can result from an RF signal of 9.5 GHz due to mixing with the second harmonic of the LO i.e.,
2 x 6 - 9.5 = 2.5 GHz. This signal will be substantially attenuated (approximately 35 dB) when compared to the normal IF of 9.5 - 6 = 3.5 GHz. If the receiver has filters at the IF to reduce the signal density and a filter has minimum insertion loss at 2.5 GHz and maximum insertion loss at 3.5 GHz, then only the low level 2.5 GHz signal will be measured and assumed to be due to a 8.5 GHz input signal whereas the input is really at 9.5 GHz.


Intermodulation Product Suppression - RF CafeSpurious intermodulation products can also result from high side mixing, but generally the suppression of undesired signals is greater. In this case, the LO is at a frequency higher than the RF input. This is shown in Figures 6 and 7.

High Side Mixing - RF CafeAs previously mentioned, the amplitude of intermodulation products is greatly reduced from that of the original signals. Table 1 shows rule of thumb approximate suppression (reduction), where ΔP = PRF(dBm) - PLO(dBm). As can be seen, the strength of the LO is a factor. The higher the LO power, the more negative the suppression becomes.







High Side Mixing Byproducts - RF CafeIf one assumes the maximum RF power for full system performance is +10 dBm and the LO power level is +20 dBm, then ΔP = -10 dB minimum. Therefore in this example, the 3RF - 2LO mixing product would be 2ΔP - 44 = - 20 - 44 = -64 dB when compared to the desired mixing product.












The use of double mixing, as shown in Figure 8, can significantly reduce unwanted signals but it is more expensive. For a 8 GHz signal in, one still generates a 2 GHz IF but by mixing up, then down, unwanted signals are not generated or significantly suppressed.

 


Double Mixing - RF Cafe

Figure 8. Double Mixing



Some of these problems can be corrected by :

(1) always having LOs on the high side versus low side of the input RF (but this is more expensive),

(2) using double mixing

(3) software programming the receiver to measure for the potential stronger signal when a weak signal is measured in a certain IF region, and

(4) improved filtering of the LO input to the mixer and the output from the mixer.


EXAMPLE 3

If the same receiver discussed in example 2 had additional bands (Figure 9) and used a switch at the IF to select individual bands, a strong signal in an adjacent band could be inadvertently measured because:

(1) the switch, which may have 80 dB of isolation when measured outside the circuit, may only have 35 dB isolation when installed in a circuit because of the close proximity of input and output lines,

(2) the strong signal in one band may have the same IF value that is being sought in an adjacent band, and

(3) the additional parameters such as PRI may be the same.

Multi Band Receiver with Common IF - RF CafeAs shown in Figure 9, assume that in band 2 we are looking for a 4.5 GHz signal that has a PRI of 1 kHz. Measurements are made at an IF of 3.5 GHz since LO-RF = IF = 8-4.5 = 3.5 GHz. If a 6.5 GHz signal is applied to band 3, its IF also equals 3.5 since LO-RF = 10-6.5 = 3.5 GHz. If this is a strong signal, has a PRI of 1 kHz, and there is switch leakage, a weak signal will be measured and processed when the switch is pointed to band 2. The receiver measures an IF of 3.5 GHz and since the switch is pointed to band 2, it scales the measured IF using the LO of band 2 i.e., LO-IF = RF = 8-3.5 = 4.5 GHz. Therefore, a 4.5 GHz signal is assumed to be measured when a 6.5 GHz signal is applied. Similarly this 6.5 GHz signal would appear as a weak 3.5 GHz signal from band 1 or a 9.5 GHz signal from band 4.

In performing this test it is important to map the entries of the UDF for each band i.e., show each resulting IF, its PRI, and the sensitivity level that the receive light is supposed to illuminate, i.e., if a test in one band used a PRI corresponding to a PRI in another band where the receive threshold is programmed to not be sensitive this will negate the effectiveness of a cross coupling test. Mapping the UDF will facilitate applying a strong signal to one band using the PRI of a desired signal in an adjacent band.


Receiver Band with Multiple UDF Entries - RF CafeCS08 TEST PROCEDURE

Assume that the receiver band is 2 to 4 GHz
as shown in Figure 10. Pick the UDF entry that has the greatest sensitivity. UDF #1 entry is for a 3±.05 GHz signal with a PRI of 1 kHz. If the test signal is set for the UDF #1 PRI, a receive light will also occur at the frequencies of UDF #2 if it also has the same PRI (this is not a test failure). If adjacent bands don't also have entries with the same PRI, then the test should be repeated for the band being tested with at least one of the adjacent band PRI values.

(1) Set the receiver or jammer to the receive
mode, verify it is working for UDF #1 and record Po, the minimum signal level where the receive light is constantly on.

(2) Raise this signal to its maximum specified level for full system performance. If a maximum level is not specified, use +10 dBm peak for a pulse signal or -10 dBm for a CW signal.

(3) Tune this strong RF signal outside the UDF #1 range and record any RF frequency where the receive light comes on. If another inband UDF has the same PRI, this is not a failure.

(4) This test is performed both inband and out of band. Out of band tests should be performed on the high end to five times the maximum inband frequency or 20 GHz, whichever is less, and on the low end to IF/5 or 0.05 F0, whichever is less, unless otherwise specified. The out of band power level is +10 dBm peak for a pulse signal or -10 dBm for a CW signal, unless otherwise specified.

(5) If a receive light comes on when it is not supposed to, record the RF and reduce the power level to where the receive light just stays on constantly. Record this level P1. The interference rejection level is P1-P0= PIR

(6) Repeat this test for each type of signal the receiver is supposed to process, i.e. pulse, PD, CW, etc.


CS04 - DESIRED WITH UNDESIRED, TWO SIGNAL INTERFERENCE TEST



The intent is for a weak desired signal to be received in the presence of an adjacent CW signal. The desired signal is kept tuned at minimal power level and a strong unmodulated signal is tuned outside the UDF region. Radar and EW receivers without preselectors are likely to experience interference when this test is performed inband. Receivers with nonlinear devices before their passive band pass filter, or filters that degrade out of band, are likely to experience susceptibility problems when this test is performed out of band.

Tests performed inband - An unmodulated CW signal is used. If the receiver is supposed to handle both pulsed and CW signals, this test is performed inband. If the pulse receiver is supposed to desensitize in order to only process pulse signals above the CW level, then only this limited function is tested inband i.e., normally the levels correspond, if a CW signal of -20 dBm is present, then the receiver should process pulse signals greater than -20 dBm.

CS04 TEST PROCEDURE

CS04 Test Signals - RF Cafe(1) As shown in Figure 11, initially the pulse signal is tuned to F0 and the minimum receive level P0 is recorded, i.e., minimum level where the receive light is constantly on.

(2) The pulse signal is raised to the maximum specified level for full system performance and tuned on either side of F0 to find the frequencies on both sides (FHigh and FLow) where the receive light goes out. If a maximum pulse power level is not specified, then +10 dBm peak is used.

In some receivers FL and FH are the band skirts.

(3) The pulse signal is returned to the level found in step 1. A CW signal at the maximum specified CW power level for full system performance is tuned above FH and below FL. If a maximum CW power level is not specified, then -10 dBm is used. Anytime the receive light is lost, the tuned CW RF value is recorded. The CW signal should be turned off to verify that the pulse signal can still be received in the absence of interference. If the pulse signal is still being received, then the interfering CW signal should be reapplied and decreased to the lowest power level where the receive light stays on constantly. Record this level P1. The interference rejection level is P1 - P0 = PIR.

(4) Out of band tests should be performed to five times the maximum inband frequency or 20 GHz, whichever is less, and on the low end to IF/5 or 0.05 F0, whichever is less, unless otherwise specified. The out of band CW power level is -10 dBm unless otherwise specified.


Failures - Out of band test

(1) If a non-linear device such as a limiter is placed before a band pass filter, a strong out of band signal can activate the limiter and cause interference with the inband signal. The solution is to place all non-linear or active devices after a passive band pass filter.

(2) Band pass filters with poor characteristics tend to pass signals with only limited attenuation at frequencies that are three times the center frequency of the band pass filter. Passage of a CW or high duty cycle signal that is out of band may desensitize or interfere with the processing of a weak inband signal.


CS03 INTERMODULATION TEST


This two signal interference test places a pulse signal far enough away (Δf) from the desired UDF frequency (F0) that it won't be identified. A CW signal is initially placed 2Δf away. If an amplifier is operating in the saturated region, these two signals will mix and produce sum and difference signals. Subsequent mixing will result in a signal at the desired UDF frequency F0 since F1 - (F2-F1) = F0. These two signals are raised equally to strong power levels. If no problem occurs, the CW signal is tuned to the upper inband limit and then tuned out of band. A similar test is performed below F0.

CS03 TEST PROCEDURES

Initial CS03 Test Signal - RF Cafe(1) Set the receiver or jammer to the receive mode. Verify it is working at a desired signal frequency, (F0), and record the minimum signal level i.e., lowest level where the receive light is constantly on (record this level P0).

(2) The modulated signal is raised to the maximum specified level for full system performance and tuned on either side of F0 to find the frequency F1 on both sides where the receive light goes out. If a maximum power level is not specified, +10 dBm peak is used. The difference between F1 and F0 is Δf as shown in Figure 12.

(3) As shown in Figure 13, a pulse signal is tuned to F1 and a CW signal is tuned to F2 where F2 = F1 + Δf on the high side. The power level of the two signals is initially set to P0 and raised together until the maximum specified levels CS03 Testing Signal - RF Cafefor full system performance are reached. If maximum power levels  are not specified, then +10 dBm peak is used for the pulse signal and -10 dBm is used for the CW signal. Whenever the receive light comes on, the two signals should be turned off individually to verify that the failure is due to a combination of the two signals versus (1) a single signal (CS08) type failure or (2) another inband UDF value has been matched. If the failure is due to the two signal operation, then the power level (P1 and P2) of F1 and F2 should be recorded. If P1=P2, the intermodulation rejection level is P1-P0=PIM. If P1?≠P2, it is desirable to readjust them to be equal when the receive light just comes on.


(4) Once the F1 + F2 signals are raised to the maximum power test levels described in step 3 without a failure, then F2 is tuned to the upper limit of the band. F2 should also be tuned out of band to five times the maximum inband frequency or 20 GHz whichever is less unless otherwise specified. The out of band power level is -10 dBm unless otherwise specified. Whenever the receive light comes on, F2 should be turned off to verify that the failure is due to a two signal test. If it is, turn F2 back on and equally drop the power levels of F1 and F2 to the lowest level where the receive light just comes on. Record the power levels (P1 and P2).

(5) Step 3 is repeated where F1 is Δf below F0 and F2=F1-Δf. Step 4 is repeated except F2 is tuned to the lower limit of the band. FΔ should also be tuned out of band down to 0.1 F0, unless otherwise specified.

(6) Normally if a failure is going to occur it will occur with the initial setting of F1 and F2. Care must be taken when performing this test to ensure that the initial placements of F1 and F2 do not result in either of the signals being identified directly.

Sample UDF Entries - RF CafeAs shown in Figure 14, if F1 was placed at 3.2 GHz it would be identified directly and if F2 was placed at 3.4 GHz it would be identified directly. Whereas, if F1 was at 3.1 GHz and F2 was at 3.2 GHz neither interfering signal would be identified directly but their intermodulation may result in an improper identification at F0. Later when F2 is tuned higher, the receive light will come on around 3.4 GHz and 3.6 GHz. This is not a test failure just a case of another inband UDF value being matched.


Cross Modulation Example - RF CafeCS05 - CROSS MODULATION



This two signal interference test places a weak CW signal where the receiver is programmed for a pulse signal and tunes a strong pulse signal elsewhere. As shown in Figure 15, when an amplifier is saturated, lower level signals are suppressed. When an amplifier is operated in the linear region all signals receive the rated linear gain. In this test the pulse signal will cause the amplifier to kick in and out of saturation and modulate the weak CW signal. The receiver may measure the modulation on the CW signal and incorrectly identify it as a pulse signal.




Initial CS05 Test Signals - RF CafeCS05 TEST PROCEDURE



(1) Initially the pulse signal is tuned to F0 and the minimum power level P0 where the receive light is constantly on is recorded.

(2) As shown in Figure 16, the signal is raised to the maximum specified level for full system performance for a pulse signal and tuned on either side of F0 to find the frequencies on both sides, (FHigh and FLow) where the receive light goes out. If a maximum pulse power level is not specified, then +10 dBm peak is used.

(3) The pulse signal from step 2 is turned off and a second signal is placed at F0. It is a CW signal that is 10 dB stronger than the peak power level (P0) measured is step 1. The receive light should not come on.

(4) As shown in Figure 17, the strong pulse signal of step 2 is turned back on and tuned above FH and then tuned below FL. Out of band tests should be performed to the maximum RF of the system + maximum IF or 20 GHz whichever is less and on the low end to the minimum RF of the system minus the maximum IF, unless otherwise specified.

Final CS05 Test Signals - RF Cafe(5) If a receive light occurs, turn off the weak CW signal since the "failure" may be due to the tuned pulsed signal, i.e. a CS08 failure or another inband UDF value has been matched.

If the light extinguishes when the weak CW signal is turned off, then turn the signal back on, reduce the value of the high level pulse signal until the minimum level is reached where the light stays on constantly. Record this level as P1. The cross modulation rejection level is P1-P0-10 dB = PCM



Table of Contents for Electronics Warfare and Radar Engineering Handbook
Introduction | Abbreviations | Decibel | Duty Cycle | Doppler Shift | Radar Horizon / Line of Sight | Propagation Time / Resolution | Modulation | Transforms / Wavelets | Antenna Introduction / Basics | Polarization | Radiation Patterns | Frequency / Phase Effects of Antennas | Antenna Near Field | Radiation Hazards | Power Density | One-Way Radar Equation / RF Propagation | Two-Way Radar Equation (Monostatic) | Alternate Two-Way Radar Equation | Two-Way Radar Equation (Bistatic) | Jamming to Signal (J/S) Ratio - Constant Power [Saturated] Jamming | Support Jamming | Radar Cross Section (RCS) | Emission Control (EMCON) | RF Atmospheric Absorption / Ducting | Receiver Sensitivity / Noise | Receiver Types and Characteristics | General Radar Display Types | IFF - Identification - Friend or Foe | Receiver Tests | Signal Sorting Methods and Direction Finding | Voltage Standing Wave Ratio (VSWR) / Reflection Coefficient / Return Loss / Mismatch Loss | Microwave Coaxial Connectors | Power Dividers/Combiner and Directional Couplers | Attenuators / Filters / DC Blocks | Terminations / Dummy Loads | Circulators and Diplexers | Mixers and Frequency Discriminators | Detectors | Microwave Measurements | Microwave Waveguides and Coaxial Cable | Electro-Optics | Laser Safety | Mach Number and Airspeed vs. Altitude Mach Number | EMP/  Aircraft Dimensions | Data Busses | RS-232 Interface | RS-422 Balanced Voltage Interface | RS-485 Interface | IEEE-488 Interface Bus (HP-IB/GP-IB) | MIL-STD-1553 & 1773 Data Bus |
  This HTML version may be printed but not reproduced on websites.

A Disruptive Web Presence

Custom Search
Over 10,000 pages indexed! (none duped or pirated)

Read About RF Cafe
Webmaster: Kirt Blattenberger
    KB3UON

RF Cafe Software

RF Cascade Workbook
RF Cascade Workbook is a very extensive system cascaded component Excel workbook that includes the standard Gain, NF, IP2, IP3, Psat calculations, input & output VSWR, noise BW, min/max tolerance, DC power cauculations, graphing of all RF parameters, and has a graphical block diagram tool. An extensive User's Guide is also included. - Only $35.
RF system analysis including
frequency conversion & filters

RF & EE Symbols Word
RF Stencils for Visio

Product & Service Directory
Personally Selected Manufacturers
RF Cafe T-Shirts & Mugs

RF Cafe Software

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel