RF Cascade Workbook

Copyright

1996 -
2016

Webmaster:

Kirt
Blattenberger,

BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:

AirplanesAndRockets.com

to Find What You Need.

There are 1,000s of Pages Indexed on RF Cafe !

- Emission Control (EMCON) -

**EMISSION CONTROL (EMCON)**

When EMCON is imposed, RF emissions must not exceed -110 dBm/meter

Figure 1. EMCON Field Intensity / Power Density Measurements

To compute the strength of emissions at the antenna port in Figure 1, we use the power density equation (see Section 4-2)

[1] or rearranging P

Given that P

P

or, the equation can be rewritten in Log form and each term multiplied by 10:

10log P

Since the m

10log P

If MIL-STD-461B/C RE02 (or MIL-STD-461D RE-102) measurements (see Figure 2) are made onseam/connector leakage of a system, emissions below 70 dBμV/meter which are measured at one meter will meet the EMCON requirement. Note that the airframe provides attenuation so portions of systems mounted inside an aircraft that measure 90 dBμV/meter will still meet EMCON if the airframe provides 20 dB of shielding (note that the requirement at one nm is converted to what would be measured at one meter from a point source).

The narrowband emission limit shown in Figure 2 for RE02/RE102 primarily reflect special concern for local oscillator leakage during EMCON as opposed to switching transients which would apply more to the broadband limit.

Figure 2. MIL-STD-461 Narrowband Radiated Emissions Limits

Note that in MIL-STD-461D, the narrowband radiated emissions limits were retitled RE-102 from the previous RE-02 and the upper frequency limit was raised from 10 GHz to 18 GHz. The majority of this section will continue to reference RE02 since most systems in use today were built to MIL-STD-461B/C.

For the other calculation involving leakage (to obtain 70 dBμV/m) we again start with:

and use the previous fact that: 10log (P

The measurement is at one meter so R

we have: = .348x10

Using the field intensity and power density relations (see Section 4-1)

Changing to microvolts (1V = 10

20 log (E) = 20 log (10

Some words of Caution

A common error is to only use the one-way free space loss coefficient α

The equation uses power density (P

However, many sources of radiation are through leakage, or are otherwise inaccessible to direct measurement and PD must be measured with an antenna and a receiver. The measurements must be made at some RF(s), and received signal strength is a function of the antenna used therefore measurements must be scaled with an appropriate correction factor to obtain correct power density.

RE-02 Measurements

When RE-02 measurements are made, several different antennas are chosen dependent upon the frequency range under consideration. The voltage measured at the output terminals of an antenna is not the actual field intensity due to actual antenna gain, aperture characteristics, and loading effects. To account for this difference, the antenna factor is defined as:

AF = E/V [4]

where E = Unknown electric field to be determined in V/m ( or μV/m)

V = Voltage measured at the output terminals of the measuring antenna

For an antenna loaded by a 50 Ω line (receiver), the theoretical antenna factor is developed as follows:

From Section 4-3 we see that A

Reducing this to decibel form we have:

20 log AF = 20logE - 20logV =

This equation is plotted in Figure 3.

Since all of the equations in this section were developed using far field antenna theory, use only the indicated region.

Figure 3. Antenna Factor vs Frequency for Indicated Antenna Gain

In practice the electric field is measured by attaching a field intensity meter or spectrum analyzer with a narrow bandpass preselector filter to the measuring antenna, recording the actual reading in volts and applying the antenna factor.

20log E = 20log V + 20log AF [7]

Each of the antennas used for EMI measurements normally has a calibration sheet for both gain and antenna factor over the frequency range that the antenna is expected to be used. Typical values are presented in Table 1.

Table 1. Typical Antenna Factor Values

The antenna factor can also be developed in terms of the receiving antenna's effective area. This can be shown as follows:

Or in log form:

20logAF = 20logE - 20logV =

While this relation holds for any antenna, many antennas (spiral, dipole, conical etc.) which do not have a true "frontal capture area" do not have a linear or logarithmic relation between area and gain and in that respect the parabolic dish is unique in that the antenna factor does not vary with frequency, only with effective capture area. Consequently a larger effective area results in a smaller antenna factor.

A calibrated antenna would be the first choice for making measurements, followed by use of a parabolic dish or "standard gain" horn. A standard gain horn is one which was designed such that it closely follows the rules of thumb regarding area/gain and has a constant antenna factor. If a calibrated antenna, parabolic dish, or "standard horn" is not available, a good procedure is to utilize a flat spiral antenna (such as the AN/ALR-67 high band antennas). These antennas typically have an average gain of 0 dB (typically -4 to +4 dB), consequently the antenna factor would not vary a lot and any error would be small.

EXAMPLE:

Suppose that we want to make a very general estimation regarding the ability of a system to meet EMCON requirements. We choose to use a spiral antenna for measurements and take one of our samples at 4 GHz. Since we know the gain of the spiral is relatively flat at 4 GHz and has a gain value of approximately one (0 dB) in that frequency range. The antenna is connected to a spectrum analyzer by 25 feet of RG9 cable. We want to take our measurements at 2 meters from the system so our setup is shown below:

Our RG9 cable has an input impedance of 50Ω, and a loss of 5 dB (from Figure 5, Section 6-1).

First, let's assume that we measure -85 dBm at the spectrum analyzer and we want to translate this into the equivalent strength at 1 NM. Our power received by the antenna is: P

also P

in log form: 10 Log P

To convert this to a value at 1 NM, we use

P

in log form after cancelling the 4B terms:

10 Log P

If we are making repetitive measurement as we might do when screening an aircraft on the flight line with numerous systems installed, or when we want to improve (reduce) the leakage on a single system by changing antennas, lines, connectors, or EMI gaskets or shielding, this mathematical approach would be unnecessarily time consuming since it would have to be repeated after each measurement. A better approach would be to convert the -110 dBm/m2 value at 1 NM to the maximum you can have at the measuring instrument (in this case a spectrum analyzer), then you could make multiple measurements and know immediately how your system(s) are doing. It should be noted that -90 to -100 dBm is about the minimum signal level that can be detected by a spectrum analyzer, so you couldn't take measurements much further away unless you used an antenna with a much higher gain.

In order not to exceed EMCON, the power density must not exceed -110 dBm/m

10

P

we solve for P

We'll be using a spectrum analyzer, so we want to compute what the maximum power or voltage may be.

Method 1 - Using the Power Density Approach

Using logs/dB and the values of P

10 Log P

taking line loss into account we have: -84.2 - 5 dB = - 89.2 dBm as the maximum measurement reading.

If we wanted to calculate it in volts, and take into account our line impedance we would have the following:

P

since our line loss is 5 dB, we have -5dB = 20 Log V

Method 2 - Using the Antenna Factor Approach

Starting with the same value of power density that we obtained above (8.57x10

From equation [6]:

20log V = 20log E - 20log AF

20log V = 65 - 43 = 22 dBμv/m.

Since dBμv/m = 20 log (V)(10

V = -98 - 5 = -103 dBv = 17 dBμv/m = 7.1x10

using the fact that P = V

Although this method is just as accurate as that obtained using method 1, the values obtained in Table 1, Section 4-1, and Figure 3 must be interpolated, and may not result in values which are as precise as the appropriate formulas would produce.

Sample Problem: What is the approximate transmit power from a receiver?

A. 1 nanowatt (nW) F. 100 μW K. 10 W

B. 10 nW G. 1 milliwatt (mW) L. 100 W

C. 100 nW H. 10 mW M. 1 kilowatt (kW)

D. 1 microwatt (μW) I. 100 mW N. 10 kW

E. 10 μW J. 1 watt (W) O. 100 kW

The question may seem inappropriate since a receiver is supposedly a passive device which only receives a signal. If the receiver was a crystal video receiver as shown in Section 5-3, it wouldn't transmit power unless a built-in-test (BIT) signal was injected after the antenna to periodically check the integrity of the microwave path and components. The potential exists for the BIT signal to leak across switches and couple back through the input path and be transmitted by the receiver's antennas.

If the receiver uses a local oscillator (LO) and a mixer to translate the signal to an intermediate frequency (IF) for processing (such as a superhet shown in Section 5-3), there is the potential for the CW LO signal to couple back through the signal input path and be transmitted by the receiver's antenna. Normally a mixer has 20 dB of rejection for the reverse direction. In addition, the LO may be further attenuated by receiver front end filters.

In both cases, the use of isolators described in Section 6-7 could be used to further attenuate any signals going in the reverse direction, i.e. back to the antenna. A good receiver design should ensure that any RF leakage radiated by the receiver will not exceed the EMCON level.

In answer to the initial question, "transmit" leakage power should be less than -34 dBm (0.4 μW) to meet EMCON. Therefore, the real answer may be "A", "B", or "C" if EMCON is met and could be "D" through possibly "G" if EMCON is not met.

**Table of Contents for Electronics Warfare and Radar Engineering Handbook**

Introduction |
Abbreviations | Decibel | Duty
Cycle | Doppler Shift | Radar Horizon / Line
of Sight | Propagation Time / Resolution | Modulation
| Transforms / Wavelets | Antenna Introduction
/ Basics | Polarization | Radiation Patterns |
Frequency / Phase Effects of Antennas |
Antenna Near Field | Radiation Hazards |
Power Density | One-Way Radar Equation / RF Propagation
| Two-Way Radar Equation (Monostatic) |
Alternate Two-Way Radar Equation |
Two-Way Radar Equation (Bistatic) |
Jamming to Signal (J/S) Ratio - Constant Power [Saturated] Jamming
| Support Jamming | Radar Cross Section (RCS) |
Emission Control (EMCON) | RF Atmospheric
Absorption / Ducting | Receiver Sensitivity / Noise |
Receiver Types and Characteristics |
General Radar Display Types |
IFF - Identification - Friend or Foe | Receiver
Tests | Signal Sorting Methods and Direction Finding |
Voltage Standing Wave Ratio (VSWR) / Reflection Coefficient / Return
Loss / Mismatch Loss | Microwave Coaxial Connectors |
Power Dividers/Combiner and Directional Couplers |
Attenuators / Filters / DC Blocks |
Terminations / Dummy Loads | Circulators
and Diplexers | Mixers and Frequency Discriminators |
Detectors | Microwave Measurements |
Microwave Waveguides and Coaxial Cable |
Electro-Optics | Laser Safety |
Mach Number and Airspeed vs. Altitude Mach Number |
EMP/ Aircraft Dimensions | Data Busses | RS-232 Interface
| RS-422 Balanced Voltage Interface | RS-485 Interface |
IEEE-488 Interface Bus (HP-IB/GP-IB) | MIL-STD-1553 &
1773 Data Bus |

*This HTML version may be printed but not reproduced on websites.*