Search RFCafe.com                          
      More Than 17,000 Unique Pages
Please support my efforts by advertising!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!
 
  Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
Software: RF Cascade Workbook | Espresso Engineering Workbook
RF Stencils for Visio | RF Symbols for Visio
RF Symbols for Office | Cafe Press
Aegis Power | Alliance Test | Centric RF | Empower RF | ISOTEC | Reactel | RFCT | San Fran Circuits
Werbel Microwave (power dividers, couplers)

Noisecom

Cafe Press

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

withwave microwave devices - RF Cafe

Resistor-Selection Nomogram
April 1967 Electronics World

April 1967 Electronics World

April 1967 Electronics World Cover - RF Cafe  Table of Contents 

Wax nostalgic about and learn from the history of early electronics. See articles from Electronics World, published May 1959 - December 1971. All copyrights hereby acknowledged.

Even in the age of computers and smartphone applets for everything, some people still are not comfortable with mathematics, including something as relatively simple as Ohm's Law. There are still a lot of electronics tinkerers around who grew up in the pencil and paper era (like moi), where slide rules ruled the day. While a software program or electronics calculator is convenient for many uses, sometimes a printed graphical tool is easier to work with - at least in a lab environment. Accordingly, for those who still appreciate a good resistor selection nomograph, here is one from the April 1967 edition of Electronics World magazine.

Here's a challenge for recent college grads that are scoffing at the old guys who are right now having a grandkid print out a copy of this nomograph for them: What is the resistor color code number associated with the color of the nomograph (green)?

Resistor-Selection Nomogram

Resistor-Selection Nomogram, April 1967 Electronics World - RF Cafe

Resistor-Selection Nomogram

By Sylvester Salva

Resistance values and power dissipations may be readily determined by the use of a straightedge.

For the man involved in the electronics field, it frequently becomes necessary to determine the value of a resistor and wattage. The nomogram below was designed to give the resistor value and its wattage simply by placing a straightedge from the potential scale to the proper current scale and reading the answer on the Resistor Value Scale or the Wattage Scale.

It will be noted that there are two current scales on the nomogram. They are listed as Current (Milliamps) Scale No. 1 and Current (Milliamps) Scale No.2. Scale No.1 is used only when determining the value of the resistor. Scale No. 2 is used for determining the wattage of the resistor.

Following are two examples illustrating the use of the nomogram.

Example No.1: It is found that a cathode bias resistor is burned out and no schematic is available. Total current of the tube - rated at 60 mA. Grid bias is -18 volts. Determine the value, in ohms, and wattage of the resistor.

Solution: Extend a straight line from 18 on the Potential Scale to 60 on the Current Sca1e No. 1. Read the value of the resistor at the intersection of this line with the Resistor Value Scale as 300 ohms. To determine the wattage, extend another line from 18 on the Potential Scale to 60 on the Current Scale No. 2. At the intersection of this line with the wattage scale, read the answer as slightly over 1 watt. Since the value is higher than 1, use the next higher value, namely 2 watts.

Example No.2: Determine the value, in ohms, and wattage of a resistor under the following conditions: Voltage is measured at 117 volts, current at 10 mA.

Solution: Extend a straight line from 117 on the Potential Scale to 10 on the Current Scale No. 1. At the intersection of this line with the Resistor Value Scale read the value as 11.7 kohms. To determine the wattage, extend another line from 117 on the Potential Scale to 10 on the Current Scale No.2. At the intersection of this line with the Resistor Wattage Scale, read the answer as just over 1 watt. Assigning the next highest value, the answer then becomes 2 watts.

Nomographs / Nomograms Available on RF Cafe:

- Parallel Series Resistance Calculator

- Transformer Turns Ratio Nomogram

- Symmetrical T and H Attenuator Nomograph

- Amplifier Gain Nomograph

- Decibel Nomograph

- Voltage and Power Level Nomograph

- Nomograph Construction

- Nomogram Construction for Charts with Complicating Factors or Constants

- Link Coupling Nomogram

- Multi-Layer Coil Nomograph

- Delay Line Nomogram

- Voltage, Current, Resistance, and Power Nomograph

- Resistor Selection Nomogram

- Resistance and Capacitance Nomograph

- Capacitance Nomograph

- Earth Curvature Nomograph

- Coil Winding Nomogram

- RC Time-Constant Nomogram

- Coil Design Nomograph

- Voltage, Power, and Decibel Nomograph

- Coil Inductance Nomograph

- Antenna Gain Nomograph

- Resistance and Reactance Nomograph

- Frequency / Reactance Nomograph

 

 

Posted July 13, 2021
(updated from original post on 3/18/2012)

withwave microwave devices - RF Cafe
Exodus Advanced Communications Best in Class RF Amplifier SSPAs

TotalTemp Technologies (Thermal Platforms) - RF Cafe

Amplifier Solutions Corporation (ASC) - RF Cafe