June 1969 Electronics World
Table of Contents
Wax nostalgic about and learn from the history of early electronics. See articles
from
Electronics World, published May 1959
- December 1971. All copyrights hereby acknowledged.
|
In the late 1960s when this
story appeared in Electronics World magazine, the television industry was just getting started with building
out infrastructure for cable TV delivery to homes. All signals were analog of course,
and there was very little digitization of receiver circuitry in TV sets; i.e., synthesized
tuners. A large percentage of televisions used vacuum tubes and relied on twin lead
transmission cable between a rooftop antenna and the back of the set. The plug-in
connection of vacuum tubes often caused problems due to high resistance contacts
(or no contact) between the tube pins and the sockets, and could also suffer from
passive intermodulation (PIM) signals generated by corroded contacts. Unshielded
twin lead, which has the advantage of much lower signal loss than coax, was a prime
source of interference pick-up, especially if a long run was used. Cable TV used
a 72-Ω coaxial cable between the street connection and the receiver, so it
was pretty much immune to interference. The cable distribution system could provide
the required signal level by using amplifiers, so the relatively high loss of coax
was not an issue. Mac's trusty sidekick, Barney, solved an interference issue caused
by a combination of a loose tube in on neighbor's TV set and a long twin lead cable
used by the guy across the street.
Mac's Service Shop: Designing a Receiver for Cable TV
By John T. Frye
Perhaps TV manufacturers should recognize cable-TV is here to stay and start
building receivers for use with it.
Barney came in out of the hot and humid June day, parked his tube caddy on the
service bench, and stood appreciatively with arms akimbo in front of the cool output
of the shop air conditioner.
"Man, summer is here!" he announced to Mac, his employer; "but I licked that
interference problem," he added with satisfaction.
"What was it?" Mac asked.
"You'd never guess. Remember we were getting complaints of a vertical bar that
kept sliding across the screen of a black-and-white set. Sometimes the interference
was present; other times it wasn't. But it was very much in evidence during the
popular evening shows. I only got a glimpse of it one time a couple of weeks ago,
and then it looked like a Barkhausen oscillation that moved! It consisted of two
narrow vertical lines that were about a half-inch apart, but instead of standing
still at the left side of the screen as proper Barkhausen lines should, these kept
moving across the screen from left to right. Before I had a chance to touch the
set, the lines disappeared. I noted, though, that this customer was using an outside
antenna, while most of his neighbors were on cable. None of them was having any
interference problems at all.
"The difficulty was really pinned down by another customer of ours, one to whom
we sold a new color set last Christmas. A couple of days ago he and the black-and-white
customer, who lives directly across the street, were talking about the interference;
and it came out the interference began just about the time the new color set was
installed. The two neighbors did a little experimenting on their own, and sure enough
the bars appeared on the black-and-white set every time the color set was turned
on and disappeared when it was turned off. To add to the confusion, the color set
was on the cable and so had no antenna to radiate any signal it was producing."
"Hm-m-m-m, that is strange. When you first started talking, I thought vertical
sync bars from the cable signal were being radiated from a long run of twin-lead
used on an unauthorized installation. We've both run into that one several times."
"That was my thought, too, but I'm glad to have company in my ignorance. Anyway,
I started checking out the color set and found a damper tube that was not seated
well in its socket. I pushed it down, and that cleared up the trouble immediately.
I suppose other receivers in the vicinity were not bothered because they were on
the cable. The combination of strong signal from the cable plus reduced pickup of
external signals made these sets relatively immune to the interference. In fact,
the color set itself did not pick up the interference it was producing; yet the
receiver on an outside antenna, at least two hundred feet away, suffered bad interference."
"And the lines moved because of the slight difference in the sync frequencies
of a color set and those of a black-and-white receiver," Mac suggested. "Ordinarily
we only see interference from a short-ranging Barkhausen oscillation on the screen
of the set producing the oscillation and timing it with the set's own sweep circuits;
in which case, of course, the bars stand still."
"Yeah, I was mulling all that over while I was driving back, and I concluded
I was darned lucky those neighboring customers of ours were on speaking terms. That
situation had all the ingredients of a really nasty service problem. But it would
probably never have happened if our black-and-white customer had been on the cable."
"True, and that reminds me of something I've been thinking about the last few
days. I read an article put out by the National Cable Television Association in
which it was stated that about three million of the TV sets in this country, or
roughly 6%, are operating on cable now. Some 2200 CATV systems are in operation,
and about the same number are franchised or are under actual construction. It is
estimated that by the next presidential election in 1972 some twenty-two million
more people will be watching TV via the cable and that within ten years 85% of all
sets in the country will be cable-connected."
"So what?"
"So it seems to me it is not a bit too early for TV manufacturers to take cognizance
of this fact and start redesigning their receivers for optimum performance on cable."
"I think I see what you're driving at. Up until CATV came along, the major requirements
of a good TV set designed to operate in either a fringe area or near a transmitter
have been such things as" - and Barney ticked off on his fingers - "a low-noise
front end and good sensitivity; a stable sync as immune as possible to ignition
noise, airplane flutter, and other types of interference that would cause a weak-signal
picture to jump and jitter; an a.g.c. system that will permit the set to handle
a very wide range of signal strength so as to provide maximum sensitivity on weak
signals without overloading on strong signals; and, of course, sufficient bandwidth
to provide good picture detail."
"So far so good," Mac said approvingly. "Now let's consider what is needed for
a set operating off the cable. To start, a low-noise front end and good sensitivity
are no longer of paramount importance. The signal delivered by the cable is usually
around a thousand microvolts across 72 ohms on all channels provided by the cable.
The hot front end is required in the cable front-end receivers, not in the TV set."
"The same thing goes for the a.g.c. system," Barney suggested. "The a.g.c. in
those front-end receivers and in the line amplifiers is designed to hold the signal
level delivered to cable-connected sets within comparatively narrow limits under
all receiving conditions. As a result, the TV set's a.g.c. system has very little
to do. What's more, the sync signal going along the cable is relatively noise-free.
If the receiver's input is protected from interference emanating outside the cable,
much less emphasis need be placed on sync-stabilizing circuitry."
"That brings up an important point," Mac interrupted.
"I was thinking that the conventional length of 300-ohm line running from antenna
terminals on the back cover of the TV receiver to the tuner should be replaced with
coax that could be connected directly to the cable and so shield the input of the
receiver completely from outside interference. Under the present arrangement, in
which an impedance-matching transformer must be used between the single-ended 72-ohm
output of the cable and the 300-ohm balanced input of the receiver, that length
of twin-lead between the antenna terminals and the tuner provides plenty of pickup
for strong signals or interference. What's more, in some cases we have both seen,
it permits radiation of the cable signal into nearby receivers working off their
own built-in antennas or off outside antennas."
"I know you're right," Barney said with a nod. "We don't have the problem here
because there is no nearby TV transmitter; but boys working on cable installations
in a city where there is a powerful transmitter tell me one of their most annoying
problems comes from the direct reception of a strong signal by that length of twin-lead
interfering with the same signal delivered by the cable. They say you can get some
dan-dan-dandy ghosts out of that arrangement. Complete shielding of the front end,
as you suggest, would eliminate this."
"One requirement for both cable-connected sets and for those operating off an
antenna remains the same," Mac continued. "I refer to the adequate bandwidth requirement.
And that brings us squarely up against a serious problem. Cable operation of TV
receivers presents those receivers with a problem they were never designed to handle.
I refer to the reception of equally strong signals on adjacent channels. In the
beginning, the FCC went to great lengths to avoid assigning adjacent channels to
TV stations operating in the same area so receivers would not have to contend with
this problem; and, in general, they were successful. Only receivers operating in
fringe-areas where overlapping signals from equally distant stations had trouble
with this particular kind of interference.
"But it is a different story on cable. Here, on many CATV systems, the receiver
has to receive a station on one channel while equally strong signals are present
on both sides of it. Receivers for use on cable, therefore, should have provision
for better adjacent-channel rejection. We both know cable systems try to help this
situation by considerably reducing the audio level of a channel below its respective
video level, but this is still not enough to prevent interference with many receivers.
The i.f. response curves of the receiver must be made to coincide more nearly with
the perfect curve shown in the textbooks - and never seen on our scopes. I realize
this is not going to be easy to do because greater reduction of adjacent channel
signals tends to narrow the bandwidth of the i.f. system; but I am sure our TV design
engineers have whipped much tougher problems than this."
"Perhaps the manufacturers can use some of the money they now have to spend on
other sections of the receiver-sections that will not be so important in cable reception
- on improving this adjacent-channel rejection," Barney suggested.
"That's my thought, too. But it seems to me the most important thing light now
is for the CATV people and the TV set manufacturers to get together and work out
their mutual problems - and they are mutual problems. It certainly will be to the
advantage of both that good reception be had off the cable in the future when the
majority of sets are going to be working off the cable."
"They can use a little cooperation," Barney offered. "As things stand now, the
CATV people are inclined to blame less-than-perfect reception on the receivers,
and the service technicians for the dealers blame the cable for poor reception.
The poor customer is caught in the middle. Perhaps both factions should remember
how the TV transmitter manufacturers and the receiver manufacturers had to work
together in the beginning when TV was getting off the ground. If they hadn't, most
of us would probably still be gathered around the console radio in the living room
instead of the color-TV set."
Posted September 5, 2024 (updated from original post
on 5/6/2017)
Mac's Radio Service Shop Episodes on RF Cafe
This series of instructive
technodrama™
stories was the brainchild of none other than John T. Frye, creator of the
Carl and Jerry series that ran in
Popular Electronics for many years. "Mac's Radio Service Shop" began life
in April 1948 in Radio News
magazine (which later became Radio & Television News, then
Electronics
World), and changed its name to simply "Mac's Service Shop" until the final
episode was published in a 1977
Popular Electronics magazine. "Mac" is electronics repair shop owner Mac
McGregor, and Barney Jameson his his eager, if not somewhat naive, technician assistant.
"Lessons" are taught in story format with dialogs between Mac and Barney.
|