Module 7 - Introduction to Solid-State Devices and Power Supplies
Pages i ,
1-1,
1-11,
1-21,
1-31,
1-41,
2-1,
2-11,
2-21,
2-31,
2-41,
2-51,
3-1,
3-11,
3-21,
3-31,
3-41,
3-51,
4-1 to 4-10,
4-11,
4-21,
4-31,
4-41,
4-51, Index
Figure 1-18. - Forward-biased PN junction. It is important to remember that in the forward biased condition, conduction is by MAJORITY current
carriers (holes in the P-type material and electrons in the N-type material). Increasing the battery voltage will
increase the number of majority carriers arriving at the junction and will therefore increase the current flow. If
the battery voltage is increased to the point where the barrier is greatly reduced, a heavy current will flow and
the junction may be damaged from the resulting heat. REVERSE BIAS. - If the battery
mentioned earlier is connected across the junction so that its voltage aids the junction, it will increase the
junction barrier and thereby offer a high resistance to the current flow through the junction. This type of bias
is known as reverse bias. To reverse bias a junction diode, the negative battery terminal is connected to
the P-type material, and the positive battery terminal to the N-type material as shown in figure 1-19. The
negative potential attracts the holes away from the edge of the junction barrier on the P side, while the positive
potential attracts the electrons away from the edge of the barrier on the N side. This action increases the
barrier width because there are more negative ions on the P side of the junction, and more positive ions on the N
side of the junction. Notice in the figure the width of the barrier has increased. This increase in the number of
ions prevents current flow across the junction by majority carriers. However, the current flow across the barrier
is not quite zero because of the minority carriers crossing the junction. As you recall, when the crystal is
subjected to an external source of energy (light, heat, etc.), electron-hole pairs are generated. The
electron-hole pairs produce minority current carriers. There are minority current carriers in both regions: holes
in the N material and electrons in the P material. With reverse bias, the electrons in the P-type material are
repelled toward the junction by the negative terminal of the battery. As the
electron moves across the junction, it will neutralize a positive ion in the N-type material. Similarly, the holes
in the N-type material will be repelled by the positive terminal of the battery toward the junction. As the hole
crosses the junction, it will neutralize a negative ion in the P-type material. This movement of minority carriers
is called MINORITY CURRENT FLow, because the holes and electrons involved come from the electron-hole pairs that
are generated in the crystal lattice structure, and not from the addition of impurity atoms.
1-21
Figure 1-19. - Reverse-biased PN junction. Therefore, when a PN junction is reverse biased, there will be no current flow because of majority
carriers but a very small amount of current because of minority carriers crossing the junction. However, at normal
operating temperatures, this small current may be neglected. In summary, the most important point to
remember about the PN junction diode is its ability to offer very little resistance to current flow in the
forward-bias direction but maximum resistance to current flow when reverse biased. a good way of illustrating this
point is by plotting a graph of the applied voltage versus the measured current. Figure 1-20 shows a plot of this
voltage-current relationship (characteristic curve) for a typical PN junction diode.
Figure 1-20. - PN junction diode characteristic curve. To determine the resistance from the curve in this figure we can use Ohm's law:
1-22
For example at point a the forward-bias voltage is 1 volt and the forward-bias current is 5
milliamperes. This represents 200 ohms of resistance (1 volt/5mA = 200 ohms). However, at point B the voltage is 3
volts and the current is 50 milliamperes. This results in 60 ohms of resistance for the diode. Notice that when
the forward-bias voltage was tripled (1 volt to 3 volts), the current increased 10 times (5mA to 50 mA). At the
same time the forward-bias voltage increased, the resistance decreased from 200 ohms to 60 ohms. In other words,
when forward bias increases, the junction barrier gets smaller and its resistance to current flow decreases.
On the other hand, the diode conducts very little when reverse biased. Notice at point C the reverse bias voltage
is 80 volts and the current is only 100 microamperes. This results in 800 k ohms of resistance, which is
considerably larger than the resistance of the junction with forward bias. Because of these unusual features, the
PN junction diode is often used to convert alternating current into direct current (rectification). Q24.
What is the name of the area in a PN junction that has a shortage of electrons and holes? Q25. In order
to reverse bias in a PN junction, what terminal of a battery is connected to the P material? Q26.
What type of bias opposes the PN junction barrier? PN JUNCTION APPLICATION Until
now, we have mentioned only one application for the diode-rectification, but there are many more applications that
we have not yet discussed. Variations in doping agents, semiconductor materials, and manufacturing techniques have
made it possible to produce diodes that can be used in many different applications. Examples of these types of
diodes are signal diodes, rectifying diodes, Zener diodes (voltage protection diodes for power supplies),
varactors (amplifying and switching diodes), and many more. Only applications for two of the most commonly used
diodes, the signal diode and rectifier diode, will be presented in this chapter. The other diodes will be
explained later on in this module.
Half-Wave Rectifier One of the most important uses of a diode is rectification. The
normal PN junction diode is well-suited for this purpose as it conducts very heavily when forward biased
(low-resistance direction) and only slightly when reverse biased (high-resistance direction). If we place this
diode in series with a source of ac power, the diode will be forward and reverse biased every cycle. Since in this
situation current flows more easily in one direction than the other, rectification is accomplished. The simplest
rectifier circuit is a half-wave rectifier (fig. 1-21 view a and view B) which consists of a diode, an ac power
source, and a load resister.
1-23
Figure 1-21A. - Simple half-wave rectifier.
Figure 1-21B. - Simple half-wave rectifier. The transformer (T1) in the figure provides the ac input to the circuit; the diode (CR1) provides the
rectification; and the load resistor (RL) serves two purposes: it limits the amount of current flow in the circuit
to a safe level, and it also develops the output signal because of the current flow through it. Before
describing how this circuit operates, the definition of the word "load" as it applies to power supplies must be
understood. Load is defined as any device that draws current. a device that draws little current is considered a
light load, whereas a device that draws a large amount of current is a heavy load. Remember that when we speak of
"load," we are speaking about the device that draws current from the power source. This device may be a simple
resistor, or one or more complicated electronic circuits. During the positive half-cycle of the input
signal (solid line) in figure 1-21 view A, the top of the transformer is positive with respect to ground. The dots
on the transformer indicate points of the same polarity. With this condition the diode is forward biased, the
depletion region is narrow, the resistance of the diode is low, and current flows through the circuit in the
direction of the solid lines. When this current flows through the load resistor, it develops a negative to
positive voltage drop across it, which appears as a positive voltage at the output terminal. When the ac
input goes in a negative direction (fig. 1-21 view A), the top of the transformer becomes negative and the diode
becomes reverse biased. With reverse bias applied to the diode, the depletion region increases, the resistance of
the diode is high, and minimum current flows through the diode. For all
1-24
practical purposes, there is no output developed across the load resistor during the negative alternation of
the input signal as indicated by the broken lines in the figure. Although only one cycle of input is shown, it
should be realized that the action described above continually repeats itself, as long as there is an input.
Therefore, since only the positive half-cycles appear at the output this circuit converted the ac input into a
positive pulsating dc voltage. The frequency of the output voltage is equal to the frequency of the applied ac
signal since there is one pulse out for each cycle of the ac input. For example, if the input frequency is 60
hertz (60 cycles per second), the output frequency is 60 pulses per second (pps). However, if the diode is
reversed as shown in view B of figure 1-21, a negative output voltage would be obtained. This is because the
current would be flowing from the top of RL toward the bottom, making the output at the top of RL negative with
respect to the bottom or ground. Because current flows in this circuit only during half of the input cycle, it is
called a half-wave rectifier.
The semiconductor diode shown in the figure can be replaced by a metallic rectifier and still achieve the same
results. The metallic rectifier, sometimes referred to as a dry-disc rectifier, is a metal-to- semiconductor,
large-area contact device. Its construction is distinctive; a semiconductor is sandwiched between two metal
plates, or electrodes, as shown in figure 1-22. Note in the figure that a barrier, with a resistance many times
greater than that of the semiconductor material, is constructed on one of the metal electrodes. The contact having
the barrier is a rectifying contact; the other contact is nonrectifying. Metallic rectifiers act just like the
diodes previously discussed in that they permit current to flow more readily in one direction than the other.
However, the metallic rectifier is fairly large compared to the crystal diode as can be seen in figure 1-23. The
reason for this is: metallic rectifier units are stacked (to prevent inverse voltage breakdown), have large area
plates (to handle high currents), and usually have cooling fins (to prevent overheating).
Figure 1-22. - a metallic rectifier.
1-25
Figure 1-23. - Different types of crystal and metallic rectifiers. There are many known metal-semiconductor combinations that can be used for contact rectification. Copper
oxide and selenium devices are by far the most popular. Copper oxide and selenium are frequently used over other
types of metallic rectifiers because they have a large forward current per unit contact area, low forward
voltage drop, good stability, and a lower aging rate. In practical application, the selenium rectifier is used
where a relatively large amount of power is required. On the other hand, copper-oxide rectifiers are generally used in small-current applications such as ac meter movements or for delivering direct current to circuits
requiring not more than 10 amperes.
Since metallic rectifiers are affected by temperature, atmospheric conditions, and aging (in the case of copper
oxide and selenium), they are being replaced by the improved silicon crystal rectifier. The silicon rectifier
replaces the bulky selenium rectifier as to current and voltage rating, and can operate at higher ambient
(surrounding) temperatures.
Diode Switch In addition to their use as simple rectifiers, diodes are also used in
circuits that mix signals together (mixers), detect the presence of a signal (detector), and act as a switch "to
open or close a circuit." Diodes used in these applications are commonly referred to as "signal diodes." The
simplest application of a signal diode is the basic diode switch shown in figure 1-24.
1-26
Figure 1-24. - Basic diode switch. When the input to this circuit is at zero potential, the diode is forward biased because of the zero
potential on the cathode and the positive voltage on the anode. In this condition, the diode conducts and acts as
a straight piece of wire because of its very low forward resistance. In effect, the input is directly coupled to
the output resulting in zero volts across the output terminals. Therefore, the diode, acts as a closed switch when
its anode is positive with respect to its cathode. If we apply a positive input voltage (equal to or
greater than the positive voltage supplied to the anode) to the diode's cathode, the diode will be reverse biased.
In this situation, the diode is cut off and acts as an open switch between the input and output terminals.
Consequently, with no current flow in the circuit, the positive voltage on the diode's anode will be felt at the
output terminal. Therefore, the diode acts as an open switch when it is reverse biased. Q27. What is a
load?
Q28. What is the output of a half-wave rectifier? Q29. What type of rectifier is constructed by
sandwiching a section of semiconductor material between two metal plates? Q30. What type of bias makes a
diode act as a closed switch? DIODE Characteristics
Semiconductor diodes have properties that enable them to perform many different electronic functions. To do their
jobs, engineers and technicians must be supplied with data on these different types of diodes. The information
presented for this purpose is called DIODE Characteristics. These characteristics are supplied by manufacturers
either in their manuals or on specification sheets (data sheets). Because of the scores of manufacturers and
numerous diode types, it is not practical to put before you a specification sheet and call it typical. Aside from
the difference between manufacturers, a single manufacturer may even supply specification sheets that differ both
in format and content. Despite these differences, certain performance and design information is normally required.
We will discuss this information in the next few paragraphs.
1-27
A standard specification sheet usually has a brief description of the diode. Included in this
description is the type of diode, the major area of application, and any special features. Of particular interest
is the specific application for which the diode is suited. The manufacturer also provides a drawing of the diode
which gives dimension, weight, and, if appropriate, any identification marks. In addition to the above data, the
following information is also provided: a static operating table (giving spot values of parameters under fixed
conditions), sometimes a characteristic curve similar to the one in figure 1-20 (showing how parameters vary over
the full operating range), and diode ratings (which are the limiting values of operating conditions outside which
could cause diode damage). Manufacturers specify these various diode operating parameters and
characteristics with "letter symbols" in accordance with fixed definitions. The following is a list, by letter
symbol, of the major electrical characteristics for the rectifier and signal diodes.
RECTIFIER DIODES DC BlockING Voltage [VR] - the maximum reverse dc voltage that will not cause breakdown.
AVERAGE forWARD Voltage DROP [VF(AV)] - the average forward voltage drop across the rectifier given at a specified
forward current and temperature. AVERAGE RECTIFIER forWARD CURRENT [IF(AV)] - the average rectified forward
current at a specified temperature, usually at 60 Hz with a resistive load. AVERAGE REVERSE CURRENT
[IR(AV)] - the average reverse current at a specified temperature, usually at 60 Hz. PEAK SURGE CURRENT
[IsURGE] - the peak current specified for a given number of cycles or portion of a cycle.
Signal DIODES PEAK REVERSE Voltage [PRV] - the maximum reverse voltage that can be applied before reaching the breakdown
point. (PRV also applies to the rectifier diode.) REVERSE CURRENT [IR] - the small value of direct current
that flows when a semiconductor diode has reverse bias. Maximum forWARD Voltage DROP AT INDICATED forWARD
CURRENT [V F@IF] - the maximum forward voltage drop across the diode at
the indicated forward current. REVERSE RECOVery TIME [trr] - the maximum time taken for the forward-bias
diode to recover its reverse bias. The ratings of a diode (as stated earlier) are the limiting values of
operating conditions, which if exceeded could cause damage to a diode by either voltage breakdown or overheating.
The PN junction diodes are generally rated for: Maximum AVERAGE forWARD CURRENT, PEAK RECURRENT forWARD CURRENT,
Maximum SURGE CURRENT, and PEAK REVERSE Voltage.
1-28
Maximum average forward current is usually given at a special temperature, usually
25º C, (77º F) and refers to the maximum amount of average current that can be permitted to flow in the forward
direction. If this rating is exceeded, structure breakdown can occur. Peak recurrent forward
current
is the maximum peak current that can be permitted to flow in the forward direction in the form of recurring
pulses.
Maximum surge current is the maximum current permitted to flow in the forward direction in the
form of nonrecurring pulses. Current should not equal this value for more than a few milliseconds.
Peak reverse voltage (PRV) is one of the most important ratings. PRV indicates the maximum
reverse-bias voltage that may be applied to a diode without causing junction breakdown. All of the above
ratings are subject to change with temperature variations. If, for example, the operating temperature is above
that stated for the ratings, the ratings must be decreased. Q31. What is used to show how diode
parameters vary over a full operating range? Q32. What is meant by diode ratings?
DIODE IDENTIFICATION There are many types of diodes varying in size from the size of a pinhead (used in subminiature
circuitry) to large 250-ampere diodes (used in high-power circuits). Because there are so many different types of
diodes, some system of identification is needed to distinguish one diode from another. This is accomplished with
the semiconductor identification system shown in figure 1-25. This system is not only used for diodes but
transistors and many other special semiconductor devices as well. As illustrated in this figure, the system uses
numbers and letters to identify different types of semiconductor devices. The first number in the system indicates
the number of junctions in the semiconductor device and is a number, one less than the number of active elements.
Thus 1 designates a diode; 2 designates a transistor (which may be considered as made up of two diodes); and 3
designates a tetrode (a four-element transistor). The letter "N" following the first number indicates a
semiconductor. The 2- or 3-digit number following the letter "N" is a serialized identification number. If needed,
this number may contain a suffix letter after the last digit. For example, the suffix letter "M" may be used to
describe matching pairs of separate semiconductor devices or the letter "R" may be used to indicate reverse
polarity. Other letters are used to indicate modified versions of the device which can be substituted for the
basic numbered unit. For example, a semiconductor diode designated as type 1N345A signifies a two-element diode
(1) of semiconductor material (N) that is an improved version (A) of type 345.
1-29
Figure 1-25. - Semiconductor identification codes. When working with these different types of diodes, it is also necessary to distinguish one end of the
diode from the other (anode from cathode). For this reason, manufacturers generally code the cathode end of the
diode with a "k," "+," "cath," a color dot or band, or by an unusual shape (raised edge or taper) as shown in
figure 1-26. In some cases, standard color code bands are placed on the cathode end of the diode. This serves two
purposes: (1) it identifies the cathode end of the diode, and (2) it also serves to identify the diode by number.
Figure 1-26. - Semiconductor diode markings. The standard diode color code system is shown in figure 1-27. Take, for example, a diode with brown,
orange, and white bands at one terminal and figure out its identification number. With brown 1-30
- |
Matter, Energy,
and Direct Current |
- |
Alternating Current and Transformers |
- |
Circuit Protection, Control, and Measurement |
- |
Electrical Conductors, Wiring Techniques,
and Schematic Reading |
- |
Generators and Motors |
- |
Electronic Emission, Tubes, and Power Supplies |
- |
Solid-State Devices and Power Supplies |
- |
Amplifiers |
- |
Wave-Generation and Wave-Shaping Circuits |
- |
Wave Propagation, Transmission Lines, and
Antennas |
- |
Microwave Principles |
- |
Modulation Principles |
- |
Introduction to Number Systems and Logic Circuits |
- |
- Introduction to Microelectronics |
- |
Principles of Synchros, Servos, and Gyros |
- |
Introduction to Test Equipment |
- |
Radio-Frequency Communications Principles |
- |
Radar Principles |
- |
The Technician's Handbook, Master Glossary |
- |
Test Methods and Practices |
- |
Introduction to Digital Computers |
- |
Magnetic Recording |
- |
Introduction to Fiber Optics |
Note: Navy Electricity and Electronics Training
Series (NEETS) content is U.S. Navy property in the public domain. |
|