NEETS Module 4 - Introduction to Electrical Conductors, Wiring
Techniques, and Schematic Reading
Pages i,
1-1,
1-11,
1-21,
2-1,
2-11,
2-21,
2-31,
2-41,
3-1,
3-11,
3-21, 4-1, 4-11, Index
- |
Matter, Energy,
and Direct Current |
- |
Alternating Current and Transformers |
- |
Circuit Protection, Control, and Measurement |
- |
Electrical Conductors, Wiring Techniques,
and Schematic Reading |
- |
Generators and Motors |
- |
Electronic Emission, Tubes, and Power Supplies |
- |
Solid-State Devices and Power Supplies |
- |
Amplifiers |
- |
Wave-Generation and Wave-Shaping Circuits |
- |
Wave Propagation, Transmission Lines, and
Antennas |
- |
Microwave Principles |
- |
Modulation Principles |
- |
Introduction to Number Systems and Logic Circuits |
- |
- Introduction to Microelectronics |
- |
Principles of Synchros, Servos, and Gyros |
- |
Introduction to Test Equipment |
- |
Radio-Frequency Communications Principles |
- |
Radar Principles |
- |
The Technician's Handbook, Master Glossary |
- |
Test Methods and Practices |
- |
Introduction to Digital Computers |
- |
Magnetic Recording |
- |
Introduction to Fiber Optics |
Note: Navy Electricity and Electronics Training
Series (NEETS) content is U.S. Navy property in the public domain. |
Figure 2-43. - Starting double lace.
Figure 2-44. - Terminating double lace.
Figure 2-45. - Alternate method of terminating the lace.
Figure 2-46. - Marling hitch as a lock stitch.
The spare conductors of a multiconductor cable should be laced separately, and
then tied to active conductors of the cable with a few telephone hitches. When two
or more cables enter an enclosure, each cable group should be laced separately.
When groups are parallel to each other, they should be bound together at intervals
with telephone hitches (figure 2-47).
Figure 2-47. - Spot tying cable groups.
Q51. What size wire bundles require double lace?
Q52. How is the double lace started?
Q53. How are laced cable groups bound together?
SPOT TYING
When cable supports are used in equipment as shown in figure 2-48, spot ties
are used to secure the conductor groups if the supports are more than 12 inches
apart. The spot ties are made by wrapping the cord around the group as shown in
figure 2-49. To finish the tie, use a clove hitch followed by a square knot with
an extra loop. The free ends of the cord are then trimmed to a minimum of 3/8 inch.
Figure 2-48. - use of spot ties.
Figure 2-49. - Making spot ties.
SELF-CLINCHING CABLE STRAPS
Self-clinching cable straps are adjustable, lightweight, flat nylon straps. They
have molded ribs or serrations on the inside surface to grip the wire. They may
be used instead of individual cord ties for securing wire groups or bundles quickly.
The straps are of two types: a plain cable strap and one that has a flat surface
for identifying the cables.
Caution
Do not use nylon cable straps over wire bundles containing coaxial cable.
Do not use straps in areas where failure of the strap would allow the strap to fall
into movable parts.
Installing self-clinching cable straps is done with a Military Standard hand
tool, as shown in figure 2-50. An illustration of the working parts of the tool
is shown in figure 2-51. To use the tool, follow the manufacturer's instructions.
Figure 2-50. - Installing self-clinching cable straps.
Figure 2-51. - Military Standard hand tool for self-clinching cable straps.
Warning
Use proper tools and make sure the strap is cut flush with the eye of
the strap. This prevents painful cuts and scratches caused by protruding strap ends.
Do not use plastic cable straps in high-temperature areas (above 250º F).
High-TEMPERATURE PRESSURE-SENSITIVE TAPE LACING
High-temperature, pressure-sensitive tape must be used to tie wire bundles in
areas where the temperature may exceed 250º F. Install the tape as follows (figure
2-52):
1. Wrap the tape around the wire bundle three times, with a
two-thirds overlap for each turn.
2. Heat-seal the loose tape end with the side of a soldering
iron tip.
Figure 2-52. - Securing wire bundles in high-temperature areas.
Warning
Insulation tape (including the glass fiber type) is highly flammable
and should not be used in a high-temperature environment. Only insulation tape approved
for high-temperature operation (suitable for continuous operation at 500º F) should
be used in high-temperature environments.
Q54. When are spot ties used?
Q55. What is used to install self-clinching cable straps?
Q56. What is used to tie wire bundles in high-temperature areas?
Summary
In this chapter you have learned some of the basic skills required for proper
wiring techniques. We have discussed conductor splices and terminal connections,
basic soldering skills, and lacing and tying wire bundles.
The basic requirement for any splice or terminal connection is that it be both
mechanically and electrically as strong as the conductor or device with which it
is to be used.
Insulation Removal - The first step in splicing or terminating
electrical conductors is to remove the insulation. The preferred method for stripping
wire is by use of a wire-stripping tool. The hot-blade stripper cannot be used on
such insulation material as glass braid or asbestos. An alternate method for stripping
copper wire is with a knife. a knife is the required tool to strip aluminum wire.
Take extreme care when stripping aluminum wire. Nicking the strands will cause them
to break easily.
Western Union Splice - a simple connection known as the Western
Union splice is used to splice small, solid conductors together. After the splice
is made, the ends of the wire are clamped down to prevent damage to the tape insulation.
Staggered Splice - The staggered splice is used on multiconductor
cables to prevent the joint from being bulky.
Rattail Joint - a splice that is used in a junction box and
for connecting branch circuits; wiring is placed inside conduits.
Fixture Joint - When conductors of different sizes are to be
spliced, such as fixture wires to a branch circuit, the fixture joint is used.
Knotted Tap Joint - This type of splice is used to splice a
conductor to a continuous wire. It is not considered a "butted" splice as the ones
previously discussed.
Splice Insulation - Rubber tape is an insulator for the type
of splices we have discussed so far.
Friction Tape - It has very little insulating value but is used as a protective
covering for the rubber tape. Another type of insulating tape is plastic electrical
tape, which is quite expensive.
Terminal Lugs - The terminals used in electrical wiring are
either of the soldered or crimped type. The advantage of using a crimped type of
connection is that it requires very little operator skill, whereas the soldered
connection is almost completely dependent on the skill of the operator. Some form
of insulation must be used with noninsulated splices and terminal lugs. The types used are clear plastic tubing (spaghetti) and heat-shrinkable tubing. When a heat
gun is used to shrink the heat-shrinkable tubing, the maximum allowable heat to
be used is 300º F. When using the compressed air/nitrogen heating tool, the air/nitrogen
source cannot be greater than 200 psig.
Aluminum Terminals and Splices - Aluminum terminals and splices
are noninsulated and very difficult to use. Some of the things you should remember
when working with aluminum wire are: (1) Never attempt to clean the aluminum wire.
There is a petroleum abrasive compound in the terminal lug or splice that automatically
cleans the wire. (2) The only tools that should be used for the crimping operation
are the power crimping type. (3) Never use lock washers next to aluminum terminal
lugs as they will gouge out the tinned area and increase deterioration.
Preinsulated Copper Terminal Lugs and Splices - The most common
method of terminating and splicing copper wires is with the use of preinsulated
terminal lugs and splices. Besides not having to insulate the terminal or splice
after the crimping operation, the other advantage of this type is that it gives
extra wire insulation support. Several types of crimping tools can be used for these
types of terminals and splices. The tool varies with the size of the terminal or
splice. Preinsulated terminal lugs and splices are color coded to indicate the wire
size they are to be used with.
Soldering - The basic skills required to solder terminal lugs,
splices, and electrical connectors are covered in this area. Prior to any soldering
operation, the items to be soldered must be cleaned; they will not adhere to dirty,
greasy, or oxidized surfaces. The next step is the "tinning" process. This process
is accomplished by coating the material to be soldered with a bright coat of solder.
The wire to be soldered must be stripped to 1/32 inch longer than the depth of the
solder cup of the terminal, splice, or connector to which it is to be soldered.
This is to prevent burning the insulation. It also allows the wire to flex at the
stress point. When you tin the wire, it should be done to one-half of the stripped
length. When soldering a connection, take precaution to prevent movement of the
parts while the solder is cooling. a "fractured solder" joint will result if this
precaution is not taken.
Soldering Tools - The important difference in soldering iron
sizes is not the temperature (they all produce 500º F to 600º F), but the thermal
inertia. Thermal inertia is the ability of soldering tools to maintain a satisfactory
soldering temperature while giving up heat to the joint to be soldered. a well-
designed soldering iron is self-regulating because its heating element increases
with the rising temperature, thus inciting the current to a satisfactory level.
When using a soldering gun, do not press the switch for periods longer than 30 seconds.
Doing so will cause the tip to overheat to the point of incandescence. The nuts
or screws that retain the tips on soldering irons and guns tend to loosen because
of the continuous heating and cooling cycles. Therefore, they should be tightened
periodically. You should never use a soldering gun on electronics components, such
as resistors, capacitors, or transistors. An advantage of using a resistance soldering
iron to solder a wire to a connector is that the soldering tips are only hot during
the brief period of soldering the connection.
Solder - Ordinary soft solder is a fusible alloy of tin and
lead used to join two or more metals at temperatures below their melting point.
The metal solvent action that occurs when copper conductors are soldered together
takes place because a small amount of the copper combines with the solder to form
a new alloy. Therefore, the joint is one common metal. The tin-lead alloy used for
general-purpose soldering is composed of 60-percent tin and 40-percent lead (60/40
solder).
Flux - Flux is used in the soldering process to clean the metal
by removing the oxide layer on the metal and to prevent further oxidation during
the soldering process. Always use noncorrosive, nonconducting rosin fluxes when
soldering electrical and electronic components.
Solvents - Solvents are used in the soldering process to remove
contaminants from the surfaces to be soldered.
Soldering Aids - use a heat shunt when you solder heat-sensitive
components. It dissipates the heat, thereby preventing damage to the heat-sensitive
component. Some type of soldering iron holder or guard should be used to prevent
the operator from being burned.
Lacing Conductors - The purpose of lacing conductors is to present
a neat appearance and to facilitate tracing the conductors when alterations or repairs
are required. Flat tape is preferred for lacing instead of round cord. Cord has
a tendency to cut into the wire insulation. The amount of flat tape or round cord
required to lace a group of conductors is about two and one-half times the length
of the longest conductor. a lacing shuttle is useful during the lacing operation
to prevent the tape or cord from
fouling. Wires should only be twisted prior to lacing if it is required, such
as for filament leads in electron tube amplifiers. When lacing wire bundles containing
coaxial cables, use the proper flat tape and do not
tie the bundles too tightly. Never use round cord on coaxial cable. a single
lace is started with a square
knot and at least two marling Hitches. a double lace is required for wire bundles
that are 1 inch or more
in diameter. It is started with a telephone hitch. Cable groups are bound together
by use of telephone hitch
Spot Ties - Spot ties are used when cable supports are used
that are more than 12 inches apart.
Self-clinching Cable Straps - If self-clinching cable straps
are used, they should be installed with the Military Standard hand tool designed
for their use.
High-temperature Areas - When you are required to tie wire bundles
in high-temperature operating areas, use only high-temperature, pressure-sensitive
tape.
Answers to Questions Q1 Through Q56.
A1. The connection must be both mechanically and electrically as
strong as the conductor or device with which it is used
A2. By use of a wire-stripping tool
A3. Hot-blade stripper.
A4. Knife.
A5. To prevent damage to the tape insulation.
A6. To prevent the joint from being bulky.
A7. When wires are in conduit and a junction box is used.
A8. Fixture joint.
A9. Knotted tap joint.
A10. As a protective covering over the rubber tape.
A11. Requires relatively little operator skill to install.
A12. Spaghetti or heat-shrinkable tubing.
A13. 300º F
A14. 200 psig.
A15. No, it is done automatically by the petroleum abrasive compound
that comes in the terminal or splices.
A16. Power-operated crimping tools.
A17. It gouges the terminal lug and causes deterioration.
A18. The use of preinsulated splices and terminal lugs.
A19. It has insulation support for extra supporting strength of the
wire insulation.
A20. To identify wire sizes they are to be used on.
A21. Solder will not adhere to dirty, greasy, or oxidized surfaces.
A22. The coating of the material to be soldered with a light coat
of solder.
A23. To prevent burning the insulation during the soldering process
and to allow the wire to flex easier at a stress point.
A24. One-half the stripped length.
A25. Movement of the parts being soldered while the solder is cooling.
A26. The capacity of the soldering iron to generate and maintain
a satisfactory soldering temperature while giving up heat to the joint being soldered.
A27. Although its temperature is as high as the larger irons, it
does not have thermal inertia.
A28. The resistance of its heating element increases with rising
temperature, thus limiting the current flow.
A29. File the tip until it is smooth and re-tin it.
A30. It will overheat and could burn the insulation of the wire being
soldered.
A31. The heating and cooling cycles.
A32. Electronic components, such as resistors, capacitors, and transistors.
A33. The soldering tips are hot only during the brief period of soldering
the connection, thus minimizing the chance of burning the wire insulation or connector
inserts.
A34. The strands can fall into electrical equipment being worked
on and cause short circuits.
A35. It enables the tip to be removed easily when another is to be
inserted.
A36. Wrap a length of copper wire around one of the regular tips
and bend to the proper shape for the purpose.
A37. Tin and lead.
A38. The solder dissolves a small amount of the copper, which combines
with the solder forming a new alloy; therefore, the joint is one common metal.
A39. 60-percent tin and 40-percent lead (60/40 solder).
A40. It cleans the metal by removing the oxide layer and prevents
further oxidation during the soldering.
A41. Noncorrosive, nonconductive rosin fluxes.
A42. To remove contaminants from soldered connections.
A43. To prevent damage to heat-sensitive components.
A44. To aid in tracing the conductors when alterations or repairs
are required.
A45. Round cord has a tendency to cut into the wire insulation.
A46. Two and one-half times the length of the longest conductor in
the group.
A47. To keep the tape or cord from fouling during the lacing operation.
A48. When required, such as for the filament leads in electron tube
amplifiers.
A49. Do not tie too tightly and use the proper type of tape.
A50. With a square knot and at least two marling hitches drawn tightly.
A51. Bundles that are 1 inch or larger in diameter
A52. With a telephone hitch.
A53. They are bound together at intervals with telephone hitches.
A54. When wire bundles are supported by cable supports that are more
than 12 inches apart.
A55. Military Standard hand tool.
A56. High-temperature, pressure-sensitive tape.
|