Welcome to the RF Cafe Website

Search:           | Sitemap

About RF Cafe | Homepage Archive

Kirt Blattenberger (KB3UON)

Advertise on RF Cafe (Advertisers)

 Live Blog | Forums

Copyright 1999-2030

Electronics & RF | Mathematics

Physics & Mechanics | Quotes

Crosswords | HumorPodcasts

Quizzes | Cogitations | Articles

Parts & Services | Videos

Radar Handbook | Cool Things

Selected Vintage Magazine Articles

Electronics World | Popular Electronics | OFA

Radio & TV News | QST | Popular Science

Popular Mechanics | Radio-Craft | Electronics

Popular Mechanics | Short Wave Craft

Mechanix Illustrated | Saturday Evening Post

RF & Electronics Symbols for Visio & Office

RF & Electronics Stencils for Visio

RF Cascade Workbook | Espresso Workbook

Copper Mountain Technologies (VNA) - RF Cafe

Amplifier Solutions Corporation (ASC) - RF Cafe

Crane Aerospace Electronics Microwave Solutions: Space Qualified Passive Products
TotalTemp Technologies (Thermal Platforms) - RF Cafe

Cascaded 2-Tone, 3rd-Order Intercept Point (IP3)

3rd-Order Intercept Point (IP3) Graph - RF Cafe

Graph of P1dB, IP2, IP3, and Saturation

See also cascade calculations for NF, IP2, IP3, and P1dB.

When two or more tones are present in a nonlinear device, intermodulation products are created as a result. A power series describes all of the possible combinations of generated frequencies. 3rd-order products lie near in frequency to the two input tones and are therefore very likely to fall inband at the output. As a device is driven farther into its nonlinear region, the amplitudes of the third order products increase while the powers of the input tones decrease. If the device was not limited in output power, then the powers of the intermodulation products would increase in power until they were eventually equal in power with the input tones at the output.

Example cascaded system - RF Cafe

Click here to view an example of a cascaded system.

Assuming a gain of 1 (0 dB) the slope of the fundamental gain line would be 1:1; the slope of the 3rd-order gain line would be 3:1. Accordingly, the 3rd-order products increase in power at twice the rate of the input tones and are always three times farther away from the IP3 than the input tones when not near saturation.

The power of the 3rd-order products can be predicted when the IP3 is known, or the IP3 can be predicted when the relative amplitudes of the 3rd-order tones and the input tones are known.

Cascading IP3 Values in a Chain of Components

Calculating the cascaded values for 3rd-order intercept point (IP3) for the system budget requires use of ratios for gain and power levels for IP3 (do not use dB and dBm values, respectively). The standard format for indicating decibel values is to use upper case letters; i.e., IP3 for units of dBm. The standard format for indicating power values is to use lower case letters; i.e., ip3 for units of mW.

Conversions:   ip3 = 10IP3/10  ↔  IP3 = 10 * log10 (ip3)

where ip3 has units of mW and IP3 has units of dBm

Cascaded components for calculating IP2 - RF Cafe

A Typical Chain of Cascaded Components

 

Cascading receiver transmitter stages two at a time - RF Cafe

Combining 2 Stages at a Time for Calculations

This equation gives the method for calculating cascaded output IP3 (oip3) values based on the oip3 and gain of each stage. When using the formula in a software program or in a spreadsheet, it is more convenient and efficient to calculate each successive cascaded stage with the one preceding it using the following format, per the drawing (above-right). Note that the ip3N-1 term in the denominator is the same as the cumulative ip3 up through the previous (N-1) stage.

Cascaded 3rd-Order Intercept Point (IP3) Formula - RF Cafe     Cascaded receiver transmitter stage notation - RF Cafe

Converting IP3 power to dBm

These formulas are used to convert back and forth between input- and output-referenced IP3 values:

IP3Output = (IP3Input + Gain)  {dBm}

IP3Input = (IP3Output - Gain)  {dBm}


The following equation is a series expansion of the mixing (multiplying) of two pure tones:

2-tone mixing products series expansion equation - RF Cafe

Equal Input Powers

(see below for unequal powers)

P3rd-order products = Pinput tones@output - 2 · (IP3 - Pinput tones@output)  {dBm}

P3rd-order products = 3 · Pinput tones@output - 2 · IP3  {dBm}

IP3 =3/2 · Pinput tones@output - 1/2 P3rd-order products {dBm}

Unequal Input Powers

IP3 spectral content unequal tone powers - RF CafePL = P2 - 2*(IP3 - P1)

PU = P1 - 2*(IP3 - P2)

where power units are kept constant in dBm or dBW.

 

 

 

 

 

 

Windfreak Technologies Frequency Synthesizers - RF Cafe

About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright:
1996 - 2024

Webmaster:

Kirt Blattenberger,

BSEE | KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

Copyright  1996 - 2026

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website: AirplanesAndRockets.com | My Daughter's Website: EquineKingdom

Windfreak Technologies Frequency Synthesizers - RF Cafe



Rigol DHO1000 Oscilloscope - RF Cafe