Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes USAF radar shop Notable Quotes App Notes Calculators Education Engineering Magazines Engineering magazine articles Engineering software Engineering smorgasbord RF Cafe Archives RF Cascade Workbook 2018 RF Stencils for Visio RF & EE Shapes for Word Advertising RF Cafe Homepage Sudoku puzzles Thank you for visiting RF Cafe!
MECA Electronics

Skin Depth (aka Skin Effect)
as a Function of Frequency, Permeability, & Conductivity

Skin Depth Equation Formula (aka Skin Effect)

Skin Depth of microstrip - RF CafeAs frequencies increase, conduction begins to move from an equal distribution through the conductor cross section toward existence almost exclusively near the surface. Depending on the conductor bulk resistivity (δs), at sufficiently high frequency all the RF current is flowing within a very small thickness at the surface. Furthermore, the current concentrates nearest to the surface that abuts the highest relative dielectric constant. Lower bulk resistivities result in shallower skin depths.

Skin Depth of round wire - RF CafeIn the case of a microstrip layout (to the right), the current concentrates nearest to the substrate dielectric material, although current does also concentrate at the other surfaces as well (redder regions). For a solid wire (to the left), the current concentrates on the outer surface. For this reason, when skin depth is shallow, the solid conductor can be replaced with a hollow tube with no perceivable loss of performance. Choice of a plating material can degrade performance (increase attenuation) if its bulk resistivity is greater than that of the copper.

Most common conductors have a relative permeability of very near 1, so for copper, aluminum, etc., a µ value of 4π* 10-7 H/m can safely be assumed. Magnetic materials like iron, cobalt, nickel, mumetals, and permalloy can have relative permeabilities of hundreds or thousands.

The equation for calculating the skin depth is given here:
          (click here table of calculated values)
          (click here for a skin depth calculator)

Skin depth equation formula

µ = permeability (4π* 10-7 H/m),  note: H = henries = Ω*s

π = pi

δs = skin depth (m)

ρ = resistivity (Ω*m)

ω = radian frequency = 2π*f (Hz)

σ = conductivity (mho/m),  note: mho [Electrical 'mho' symbol - RF Cafe] = Siemen [S]

Example: Copper @ 10 GHz (ρCu=1.69*10-8 Ωm)

Formula copper skin depth - RF Cafe

ERZIA (RF amplifiers, wireless, communications) - RF Cafe ConductRF D38999 RF Cables - RF Cafe
QuinStar - RF Cafe Antenna Test Lab - RF Cafe
About RF Cafe
Kirt Blattenberger - RF Cafe Webmaster
Copyright: 1996 - 2018
Webmaster:
    Kirt Blattenberger,
    BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:  AirplanesAndRockets.com

spacer