Left Border Content - RF Cafe
RIGOL Technologies (test equipment) - RF Cafe
Res-Net Microwave - RF Cafe
 

About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024
Webmaster:
    Kirt Blattenberger,

    BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while typing up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:

AirplanesAndRockets.com

Header Region - RF Cafe
Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes App Notes Calculators Education Engineering magazine articles Engineering software Engineering smorgasbord RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising RF Cafe Homepage Thank you for visiting RF Cafe!
Sub-Header - RF Cafe everythingRF RF & Microwave Parts Database (h2) - RF Cafe

Constant K Type High-Pass Filter Design
August 1952 Radio News Article

August 1952 Radio & Television News
August 1952 Radio & Television News Cover - RF Cafe[Table of Contents]

Wax nostalgic about and learn from the history of early electronics. See articles from Radio & Television News, published 1919-1959. All copyrights hereby acknowledged.

Constant K filters are not seen much in modern designs, but were some of the earliest types of controlled impedance frequency selective networks. George Campbell is credited with inventing constant K filters in the early days of the last century. He referred to the circuits as "electric wave filters." Campbell's filters consisted of identical cascaded sections of "T" and "pi" inductor and capacitor combinations, yielding arbitrarily high (theoretically) out-of-band cutoff and band edge steepness. Less than ideal quality factor of the components causes realizable filters to exhibit increasing insertion loss and reduction in band edge corner sharpness as sections are added. Within a couple decades as improved filters became necessary, other transfer functions like the Butterworth, Chebyshev, Bessel, Gaussian, elliptical, and others were replacing the constant K for their superior in-band and out-of-band amplitude, phase, and group delay characteristics, depending on system requirements. This nomograph from a 1952 issue of Radio & Television News magazine made constant K filter design a cinch.

Constant K Type High-Pass Filter Design

Constant K Type High-Pass Filter Design, August 1952 Radio News - RF Cafe

Fig. 1 - (A) "T" type and (B) "pi" type constant K high-pass filter.

By Seizo Yamasita

The constants of "T" or "pi" type constant K high-pass filter may be determined rapidly with acceptable accuracy with the aid of this chart.

In designing an electrical filter, it is customary to determine the constants of the elements to a fairly high degree of accuracy. However, the damping characteristic of the constant K type filter is not sharp, so that calculations to an accuracy of better than a few per-cent are seldom required, and effective use can be made of charts to determine inductance and capacitance.

Fig. 1 shows both the "T" and "pi" types of constant K high-pass filter. In this figure:

L = R/(4πf0)

C = 1/(4πf0R)

where f0 is the cut-off frequency and R is the image impedance.

From the chart (Fig. 2) it is possible to determine L and C if f0 and R are known. For example, the chart shows that a filter with a cut-off frequency of 10,000 cycles and an image impedance of 600 ohms would call for L = 4.8 mH. and C = 0.014 μfd.

 

 

Posted February 24, 2021

Footer - RF Cafe Anatech Electronics
Right Border Content - RF Cafe
withwave microwave devices - RF Cafe
Axiom Test Equipment - RF Cafe
 

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free