April 1947 Radio-Craft
[Table of Contents]
Wax nostalgic about and learn from the history of early electronics.
See articles from Radio-Craft,
published 1929 - 1953. All copyrights are hereby acknowledged.
|
This installment of the
multi-month series of articles on antenna principles covers directional arrays
for 300 MHz and higher. Keep in mind that in 1947 when this appeared in
Radio-Craft magazine, wavelengths of a meter or less were considered to be
at the upper end of the operational range. Parabolic reflector antennas were the
domain primarily of ground-based installations due to the physical size and
weight being prohibitive in airborne platforms, and even then they were rarely
used at the time. Most ground and airborne installations were composed of dipole
antennas with various configurations of reflector and director elements for
desired gain and directivity characteristics. Special applications like for
direction finding and longer wavelength radio communications used loop and long
wire antennas, respectively. Highly directive dipoles are the focus here with
some useful graphs for use in design.
Part II of
this "Antenna Principles" series appeared in the January 1947 issue,
Part III in
February, Part IV in March,
Part V
in April, and Part VI in the May 1947. I do not yet have Part I from the December 1946
issue.
Antenna Principles - Directional Arrays for 300 Megacycles and Higher
Photo A - Billboard array used by Army radar.
Photo by U.S. Army Signal Corps
Part V - Directional Arrays for 300 Megacycles and Higher
By Jordan McQuay
Antennas designed to operate in the u.h.f. region of the radio spectrum - above
300 megacycles - employ most of the basic principles of antenna technique but also
introduce some entirely new concepts of radio transmission and reception. Chief
among these is the high degree of directivity obtained through use of antenna arrays.
An array - as described in previous articles of this series - is an arrangement
of antenna elements. One or more radiating dipoles in conjunction with one or more
reflectors, directors, or other dipoles, are used to provide, through their combined
action or interaction, considerable directivity and consequent large antenna gain.
An array may consist of a large number of elements (Photo A) or a minimum of two
elements (Fig. 2).
As in other antennas, a transmitting array is the same as a receiving array,
both electrically and structurally. Their functions are reciprocal.
The size of an antenna array is directly proportional to the operating wavelength.
Theoretically, an array might be constructed for use at any wavelength. Practically,
however, this tends to be impractical for waves longer than about 1 meter (or frequencies
smaller than 300 mc) because of the direct relationship between wavelength and the-physical
size of the antenna elements.
For instance, an adequate directional array for operation at 10.0. meters might
conceivably be a quarter-mile long and almost as high!
Primarily for this reason, use of complex directional arrays is usually con-fined
to the transmission and reception of radio waves less than 1 meter in length. And
the full range of usefulness of arrays extends down to about 10 centimeters in length.*
Radio waves less than 1 meter in length have quasi-optical characteristics. They
act very much like infrared light waves.
With a suitable radiating array, u.h.f waves may be confined and focused into
a very narrow beam of r.f. energy, and then directed to ward a similar receiving
array. These radio waves travel along direct or semi-optical paths. There is no
ground wave. Propagation does not depend upon the sky wave, as in the low frequencies.
Arrays used for either transmission or reception are mounted at least 12 wavelengths
above ground in normal practice. Thus, they are considered as functioning in free
space and independent of ground effects.
Fig. 1 - How adding a director or reflector alters the dipole
pattern.
Fig. 2 - Same directivity is provided with either reflector or
director.
Dipole elements, whether radiating or parasitic, are usually constructed of conductive
tubing. Metal rods can also be used, however, since microwave energy is confined
to the outside of such metals.
All elements of an array are mounted in a fixed position. If mobility in any
direction is desired, the entire array is moved without disturbing the relative
positions of the elements: dipoles, reflector, or directors.
U.h.f. signals transmitted by an array of horizontally mounted dipoles are horizontally
polarized, and such signals can be clearly and strongly received only by an array
consisting of horizontally mounted receiving dipoles. Similarly, an array of vertically
arranged elements will send signals that are vertically polarized and can be received
well only by a vertically arranged receiving array.
Horizontally polarized waves are more generally used in u.h.f. practice because,
unlike their vertical counterpart, they are not attenuated when passing close to
the earth's surface.
Thus, the position (horizontal or vertical) of the various elements of an array
in any plane determines the polarity of the microwaves sent or received.
The number and structural arrangement of the elements determine the pattern of
field strength or field intensity. Thus they affect the power gain and the degree
of directivity of the array. Extremely directional antenna arrays may have directional
patterns only a few degrees in width (generally measured at half-power points).
Even though u.h.f. arrays provide a limited range of transmission, this high
degree of directivity is a distinct advantage. It permits multiple use of the same
wavelength by countless stations having only small geographic separation. The high
resolving power of u.h.f. waves has made possible radar and other navigational aids
for airplanes and ships at sea. In this uncrowded region of the radio spectrum,
wide bands are available for single channels useful to television, facsimile, and
carrier telephony.
Directivity provides either an effective increase in transmitter power or receiver
sensitivity, depending upon use of the antenna array. The same directional characteristics
apply to receiving as well as transmitting arrays, resulting in very large power
gain between the two points.
Use of ultra high frequencies simplifies general system design, since the physical
dimensions of the components or elements of the circuits are of the same order as
the length of the radio waves passing through the equipment.
For this reason, in u.h.f. technique it's desirable to have a visual conception
of the actual length of the radio waves being transmitted or received.
Simplest of all antennas is a half-wave dipole isolated completely in free space.
If it were possible to feed energy either to one end or the center of such a
theoretical dipole, radiation would take place at right angles to the dipole.
Since, in normal u.h.f. practice, the radiating dipoles are usually situated
in a horizontal position with, respect to the earth, this theoretical dipole (and
all arrays that follow) will be considered in terms of the horizontal position.
(All dipoles and arrays discussed transmit or receive horizontally polarized waves.)
The complete shape of the radiation pattern of the theoretical dipole in free
space resembles a doughnut, with the dipole passing through the center (Radio-Craft,
December 1946, p. 23). A horizontal cross section of the pattern resembles a figure
eight in shape, and is bidirectional (Fig. 1).
Reflectors
Photo B - Radar antenna in Beaufighter nose.
British Official Photo
Photo C - A 4-element Yagi array under RAF night-fighter nose.
British Official Photo
This bidirectional radiation of a half-wave dipole may be affected by reflectors
or directors, parasitic elements assisting in the unidirectional concentration of
energy.
A reflector is placed behind a radiating dipole, in a position opposite in direction
to the desired field of maximum intensity. But a director is placed before, or in
front of, the radiating dipole, in a position toward the desired field of maximum
intensity. Neither type of element is electrically connected to the radiating or
receiving circuit.
The simplest type of reflector consists of a single piece of rod or tubing, very
similar in shape and general appearance to the radiating dipole. However, the reflector
is slightly longer than the radiating dipole.
Such a reflector is mounted parallel to and about one-quarter wave behind the
dipole. A typical arrangement (Fig. 2) employs a reflector 5 percent longer than
the center-fed half-wave dipole. spaced 0.2λ behind the radiator. The reflector
is entirely parasitic in nature. It absorbs power from the dipole and then reradiates
it, acting somewhat like a second dipole. Length and spacing of the reflector cause
the re-radiation to have a phase and polarity relation with the original radiation
such that the two fields of intensity add in the desired direction of power gain
and cancel in the opposite direction.
Only a, small amount of energy travels beyond the reflector, because the two
fields cancel when they are of opposite polarity and phase. However, reflected energy
arrives back at the dipole with the same polarity and in phase with the radiating
dipole, adding to the field intensity in a direction opposite to the reflector.
The resultant field-strength pattern (Fig. 1) reveals pronounced directivity a right
angles to the dipole.
Directors
A director is similar in shape and construction to a reflector, but is slightly
shorter than the radiating dipole. The director is placed parallel to and about
one-tenth wave in front of the dipole. It is a parasitic element, unconnected to
a source of circuit energy, and consists of a single piece of rod or tubing.
A typical arrangement (Fig. 2) employs a director 5 percent shorter than the
center-fed half-wave dipole, spaced 0.1λ in front of it.
The director acts as a second dipole by absorbing power from the radiating dipole
and then reradiating it. However, due to length and spacing of the director the
reradiation has a phase and polarity relation with the original radiation such that
the two fields of intensity add in one direction and cancel in the opposite direction.
The resultant field-strength pattern is similar to the pattern with a dipole and
a reflector.
An example of the practical use of a radiating dipole and a director is the radar
antenna (Photo B) used on many airplanes, where economy of space is a factor.
Fig. 3 - Effect of spacing of parasitic element on antenna gain.
Fig. 4 - Directivity is increased by increasing number of elements.
In summary, directors and reflectors exert somewhat similar influences on a radiating
dipole when used separately. When used in combination, directional radiation and
consequent power gain are almost doubled because both reflector and director influence
radiation similarly. The reflector element is generally 5 percent longer than the
half-wave radiating dipole; the director 5 percent shorter in length. The important
factor of phase is controlled by these dimensions plus the structural spacings between
the parallel elements.
Spacing is important. And optimum spacing - in terms of relative field strength,
or power gain - may be determined from the design chart, shown in Fig. 3.
For maximum power gain use of a reflector with a dipole requires a spacing between
0.2λ and 0.25λ. When a director is used, the spacing is more critical,
the optimum value being about 0.1λ.
Combining a director and a reflector to influence the radiation of a half-wave
dipole causes a two-fold increase in both field intensity, directivity, and power
gain. Because the three elements are arranged parallel and in a horizontal plane,
they are known as horizontal arrays. The array (Fig. 4) produces a horizontal radiation
beam with a width of about 60 degrees, measured at half-power points.
Addition of a second director provides greater power gain and more directivity.
Dimensions of the second director are the same as those of the primary director,
but the greater spacing between the two directors should be noted. Beam width of
40 degrees is typical.
Such an array is standard equipment for radar-equipped RAF night-fighters (Photo
C), and is also used for other types of radar installations on aircraft; where available
space is limited.
Use of three directors with a dipole and reflector further improves the directional
effects of the horizontal array and provides a radiation beam approximately 15 degrees
in width.
Four directors with a dipole and reflector are used on each of four "legs" of
the extremely directional array of a U.S. Army combat radar set. Consisting of 4
phased sets of horizontal arrays, the antenna can be considered as an array of arrays.
The combined radiation pattern provides a very narrow beam less than 8 degrees in
width.
Almost any number of directors can be used with a reflector and single radiating
dipole. Some radio amateurs have used as many as 8 or 10 directors in a horizontal
array. The practical limit is about 4 or 5 directors, all of the same dimensions.
* At wavelengths of less than 10 centimeters, arrays are replaced by parabolic
reflectors, lens systems, horns, and other radiating devices which will be discussed
in the next issue of Radio-Craft.
*For further study of the electret, its principles and practical applications,
see Radio-Craft, November, 1945, page 88. - Editor.
Posted April 2, 2020
|