Search RFCafe.com                           
      More Than 18,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils for Visio | RF Symbols for Visio
RF Symbols for Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits

KR Electronics (RF Filters) - RF Cafe

Exodus Advanced Communications Best in Class RF Amplifier SSPAs

Innovative Power Products (IPP) Directional Couplers

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Tennode microwave devices - RF Cafe

High Power Crystal Set
August 1960 Popular Electronics

August 1960 Popular Electronics

August 1960 Popular Electronics Cover - RF CafeTable of Contents

Wax nostalgic about and learn from the history of early electronics. See articles from Popular Electronics, published October 1954 - April 1985. All copyrights are hereby acknowledged.

Most regular RF Cafe visitors will probably not be too interested in this 1960 Popular Electronics magazine article, but there are a lot of people who build and/or repair vintage radio gear and search the Internet for helpful information. Having built a couple crystal radio sets as a kid, I've always been amazed at how a few picowatts of RF energy can be received, processed, and heard through an ear plug without the need for external power from a battery.

Speaking of crystal radios, I remember one time while working as an electrician in Annapolis, Maryland, (prior to entering electronics) I had a telephone handset for use in communicating with other electricians in a building I was wiring, and it picked up the local AM radio station. A pair of the old style handsets with carbon microphones would, with the help of a single 'D' cell in series, function as a very acceptable intercom system using two standard electrical wires between them. I could go on the building roof to work on a compressor unit and communicate with a guy in the panel room simply by having us connect to the same two wires (usually 14 or 12 gauge). Anyway, the microphone evidently acted as a rectifier, possibly due to dirty spring contacts against the element, and processed the AM radio signal. It was clear as a bell. After hearing the broadcast, I looked around (remember I was on the roof) and saw that I was about a block away from an AM antenna tower. Mystery solved. I never have had a dental filling receive a radio broadcast.

High Power Crystal Set

By Walter B. Ford

Voltage-doubler circuit drives miniature speaker - RF Cafe

Voltage-doubler circuit drives miniature speaker

Layout is not critical but L2 and L3 should be mounted at right angles to each other - RF Cafe

Layout is not critical but L2 and L3 should be mounted at right angles to each other.

The crystal set shown was built on a wooden chassis - RF Cafe

The crystal set shown was built on a wooden chassis. If a metal chassis is used, be sure to insulate the Fahnestock clips (antenna and ground) from the chassis.

Here's a pint-sized crystal radio with enough oomph to drive a 2 1/2" speaker. This little unit's selectivity is far better than you'd expect to find in a crystal receiver and volume is equal to that obtained with sets using a transistor. No external power source is required.

The unusual selectivity of this radio is due to its special double-tuned circuit. A pair of diodes connected as a voltage-doubler provides the extra kick to operate the small speaker. An output jack is provided for headphone listening and for connecting the set to an amplifier.

Construction.

The model was built on a 2 1/2" x 4 1/2" wooden chassis with a 3 1/2" x 4 1/2" metal front panel. However, size is not critical, and other materials can be substituted if desired.

Two standard ferrite loopsticks, L2, and L3, are used. Both must be modified by the addition of a second winding, L1 and L4, respectively. Each of the added windings consists of 22 turns of No. 24 cotton-covered wire wound on a small cardboard tube as shown on the pictorial. (Actually, any wire size from No. 22 to No. 28 with cotton or enamel insulation will do the job.) The diameter of the cardboard tube should be slightly larger than L2 and L3 so that L1 and L4 will slip over L2 and L3 easily.

High power crystal radio schematic - RF Cafe

Crystal radio schematic

Parts List

C1a/C1b - 2-gang 365-µµf. variable capacitor (Lafayette MS-142 or equivalent)

C2 - 180-µµf. compression-type trimmer capacitor

C3, C4 - .005-µf. fixed capacitor

D1, D2 - IN34A diode

J1 - Closed-circuit phone jack

L1, L4 - 22 turns of No. 24 cotton-covered wire (see text)

L2, L3 - Ferrite antenna coil (Miller 6300 or equivalent)

R1 - 47,000-ohm, 1/2-watt resistor (see text)

T1 - Replacement-type output transformer; 3000-to 10,000-ohm primary; 4-ohm secondary

Speaker - 2 1/2" speaker, 4-ohm voice coil (Lafayette SK-65 or equivalent

Misc. - Hardware, wood, aluminum sheet, Fahnestock clips, etc.

 

 

For phone operation only, the speaker, transformer, and resistor R1 can be omitted.

In this case, connect high-impedance phones in place of R1.

Resistor R1 is used only for feeding the set into an amplifier; it should be omitted for both earphone and loudspeaker operation. Trimmer capacitor C2 should be soldered across the stator terminals of two-gang variable capacitor C1a/C1b, as shown. The speaker and output transformer can be mounted wherever convenient.

After all of the parts have been mounted on the chassis, wire them together following the schematic and pictorial diagrams. Be sure that diodes D1 and D2 and capacitors C3 and C4 are correctly polarized.

Alignment and Operation

To align the receiver, first connect it to an antenna and ground. (The optimum length of the antenna varies with location, but 50 feet will usually be suitable in areas serviced by several broadcast stations.) Next, plug in a high-impedance earphone at jack J1. Tune in a station near the high-frequency end of the broadcast band - say 1500 kc. - and adjust the trimmer capacitors on variable capacitor C1a/C1b for the loudest signal.

Trimmer capacitor C2 should then be adjusted for the best selectivity and volume over the entire broadcast band. Finally, coils L1 and L4 can be optimally positioned by sliding them back and forth over coils L2 and L3. If a nearby station interferes with reception of a weaker one, tune the slug on L2 for minimum interference.

For loudspeaker operation, simply unplug the earphone from J1 - strong local stations should come in with fair volume. To operate the set as an AM tuner, wire R1 in place and connect J1 to the crystal-phono input of a preamplifier or integrated amplifier. The set should give excellent results with a quality hi-fi system.

How It Works

The receiver employs a double-tuned circuit feeding a crystal-diode voltage-doubler/detector which drives a small speaker. In operation, r.f. signals picked up by the antenna system are induced into coil L2 from coil L1. The desired signal is selected by tuned circuit C1a-L2 and coupled through capacitor C2 to a second tuned circuit, C1b-L3, which improves the selectivity by narrowing the r.f. bandpass. The twice-tuned r.f. signal is then induced into coil L4 from coil L3.

The positive half of the r.f. signal appearing across L4 passes through diode D2 to charge capacitor C4; the negative half of the signal passes through diode D1 to charge capacitor C3. Polarities of the charges on C3 and C4 are such that the effective voltage is doubled. This voltage appears across the primary of output transformer T1, which changes the high impedance at the output of diodes D1 and D2 to the low impedance required by the speaker.

When high-impedance earphones are plugged into closed-circuit jack J1, the speaker is disconnected and the output from the diodes feeds directly into the earphones. Optional load resistor R1 is placed across the output of the diodes when the receiver is used with an amplifier.

 

 

Posted November 29, 2021
(updated from original post on 6/24/2013)

Tennode microwave devices - RF Cafe
Rigol DHO1000 Oscilloscope - RF Cafe

Innovative Power Products Cool Chip Thermal Dissipation - RF Cafe

PCB Directory (Manufacturers)