After having begun my electronics career in the USAF as an airport
surveillance radar technician, my interest is always piqued by articles
on the subject. Like so many other types of electronics, radar is
so common today that not many people think it is anything special
- just another convenience that has been around for as long as they
can recall - and indeed it likely has been since radar was first
put into practical operation in the early 1940s. In 1945, the last
year of World War II, Radio News magazine ran a multi-month
series on radar system theory of operation and design. When I look
at the detailed block diagram, it brings back memories of the
MPN-14
search and precision approach radar systems that I worked on. In
tech school at Keesler AFB, Mississippi, we spent nine months for
7 hours per day, five days per week with piles of schematics learning
stage by stage how the entire system worked. The primary radar systems,
VHF, and UHF navigation radios were vacuum tube based, while the
Identification Friend or Foe (IFF), video mapper, and a handful
of other secondary systems actually had those newfangled transistors
in them. RF, IF, and video processing was all done via analog circuitry.
The early radar engineers were an ingenious bunch.
Practical Radar (part 5)
Illustrated
by Julian Krupa
By Jordan McQuay
Part 5. The design of radar receivers capable of detecting
weak echo signals. Conventional u.h.f. tubes, circuits, and design
techniques are used throughout.

Fig. 1. Basic block diagram of a radar set.
|
A constant barrage of r.f. pulses from a radar set scans the
air and land and sea, searching for targets in light or darkness,
in any kind of weather.
The pulses travel at the speed of light until they strike a target,
when the r.f. energy is reflected or reradiated at equal speed in
all directions from the surface of the target. Some of this reflected
energy returns to the radar set in the form of echoes which are
picked up by the radar receiving antenna.
The receiver takes every weak echo from the antenna, amplifies
it, detects the echo envelope, and then feeds the rectified signal
to the indicator unit of the radar set.
Once the echo signals are received from targets, determination
of the ranges and directions of the targets are based on the facts
that radio-frequency energy travels at a constant velocity (about
186,000 miles-per-second) and that the antenna set of a radar set
is movable and highly directional.
The range or distance to a target can be found by multiplying
the velocity by one-half the time a single pulse requires to complete
a round-trip cycle, known as a radar cycle. This time is measured
electronically by the cathode-ray oscilloscope and immediately translated
into terms of distance - in yards or miles.
The physical position of the antenna system then gives us two
angular measurements, the azimuth or bearing, and the elevation
angle of the target.
Knowing the range or distance, azimuth, and angle of elevation,
we can locate accurately the position of any object in space or
on land or water.
The reception and detection of echoes from distant targets is
an important job in the overall function of a complete radar set
(Fig. 1).
Because reflections from any target are scattered at random in
all directions, the few echoes that return to the radar set are
very weak. Yet these signals must be accepted by the receiver and
amplified sufficiently so they can be observed as visual signals
on the time base of a cathode-ray oscilloscope.
This ability of the receiver to detect and amplify extremely
weak echo signals is a measure of the effectiveness of the radar
equipment; the weaker the acceptable echo signal, the greater the
workable range of the radar set.
Radar receivers employing, for the most part, conventional types
of u.h.f. tubes and circuits require a fairly wide bandwidth input,
at the same operating frequency as the radar transmitter. Except
in this one respect, the radar receiver needn't differ greatly from
other u.h.f. receivers. Therefore, much of the published and known
theory of u.h.f. receiver operation is applicable to radar receivers.
The Superheterodyne
A radar receiver must supply considerable amplification, with
inherent stability and extreme sensitivity. For this purpose a superheterodyne
circuit logically offers itself.
Special types of high-frequency tubes with low interelectrode
capacitances are used in the r.f., local oscillator, and i.f. stages.
And a large number of i.f. amplification stages may be expected
in a radar receiver. These and other u.h.f. refinements give stability
of operation at ultra-high frequencies, as well as a high degree
of sensitivity. Even when the receiver employs as many as six or
eight stages of i.f. amplification, there is considerable stabilization.
The block diagram of a basic superheterodyne receiver suitable
for radar is shown in Fig 2.
It functions much in the conventional manner, with some important
exceptions. The input to the receiver is broadly tuned with provisions
for changing the input bandwidth; the intermediate frequency is
measured in megacycles and the output of the receiver is a video
signal containing a wide range of component frequencies.
A number of other circuit conditions must be considered in addition,
if the radar receiver operates at ultra-high frequencies. High amplification
by any one r.f. stage is seldom possible and there are considerable
losses in the process of conversion to an intermediate frequency.
The shortness of interconnecting leads becomes important. Interlocking
of amplifier and local oscillator tuning becomes more difficult
to avoid. All r.f. and i.f. circuit elements must be well shielded.
Tuned sections of transmission lines are often used as "tank" circuits,
and special types of u.h.f. tubes must be used in the r.f. local
oscillator, and i.f. stages of the receiver.
In general, as the frequency of operation is increased, the physical
structure and electrical design of radar superheterodyne circuits
becomes more radically altered.
All of this is necessary to preserve the shape of the reflected
echoes, while they are being detected and amplified.
It's a big job for the radar receiver.
Often the simple diagram (Fig. 2) may become quite complicated,
as shown in Fig. 4, where as many as 20 or 25 separate and distinct
stages compose the complete receiver.
But regardless of the total number of stages in a radar superheterodyne,
the receiver can be conveniently divided into five principal parts;
the radio-frequency amplifier stages, the mixer or frequency conversion
stage, the i.f. amplifier stages, the (second) detector stage, and
the video amplifier stages.

Fig. 2. Basic block diagram of radar superheterodyne receiver.
Problems of Noise
Like other u.h.f. receivers, the radar receiver is faced with
the eternal problem of noise disturbances generated within the circuits
of the receiver itself. If it were not for this problem, any number
of amplification stages could be used to increase the amplitude
of the echo signal, no matter how weak, by any desired amount.
These noise disturbances actually are random, minute voltage variations
due to any of several circuit conditions - usually associated with
radio-frequency amplifier stages of the receiver.
The effect of these noise voltages depends not so much upon their
individual amplitudes, but upon the power relation between the echo
signal and the collective noise. If the amplitude of the noise voltages
is not less than the amplitude of the echo signal, the echo cannot
be recognized at the output of the receiver.
For this reason, the noise voltages must be kept as low as possible;
i.e., the signal-to-noise ratio must be kept high. The lower the
noise level, the weaker the acceptable echoes - and the greater
will be the working distance of the radar set. Thus, internal noise
in the early stages of the receiver directly affects the useful
range of the equipment.

Fig. 3. Basic block diagram of superregenerative receiver.
|
There are three different kinds of noise disturbances in the
r.f. section of a receiver; noise due to thermal agitation, noise
due to shot effect, and hum or induced noises.
Thermal agitation - the random motion of electrons in a conductor
- is caused primarily by either high conductor resistance, or high
operating temperature.
Shot effect - the irregular emission of electrons by the cathode
of the r.f. amplifier tubes - is caused by low filament operating
temperatures, resulting in a low space charge within the tube.
Stray electrostatic or electromagnetic fields often induce hum
and other extraneous noises into a u.h.f, circuit. This is a form
of modulation and generally exists when units of the r.f. stages
are not properly shielded.
While it has not been possible to eliminate the noise disturbances
caused by these three effects, most of them have been minimized
by improved u.h.f. design and the use of special tubes.
Atmospheric "noise," or static, is another contributing factor
to the sensitivity of the radar superheterodyne. A fairly wide input
bandwidth would be required by most receivers, since the video output
of the receiver must contain a wide range of frequencies, i.e.,
be rich in harmonics. for faithful reproduction of the echo pulse.
This wide bandwidth admits a greater amount of spurious external
"noise" and atmospherics, which usually must be contended with unless
some form of variable input bandwidth is used in the first r.f.
stage of the receiver.
Considerable noise may be minimized or even eliminated by dividing
the superheterodyne receiver physically so that the r.f, stages
and mixer are located near the antenna system, and the i.f. and
video stages are located elsewhere, near the main components of
the radar equipment.
Parts of the receiver may often be distributed throughout the
radar set so that their physical identity becomes lost. However,
for purposes of our discussion we will assume the receiver to be
a complete component, consisting of the r.f. amplifier, frequency
conversion, i.f. amplifier, and video amplifier stages.
Glossary of Radar Terms
Antenna array - A symmetrical arrangement of dipoles
with directional characteristics.
Antenna reflector - See reflector.
Antenna switch - See T-R switch.
Azimuth - Bearing or angular direction relative to true
north.
Beam width - The width in azimuth of the pulsed r.f.
energy beam.
Bearing - See Azimuth.
Blocking oscillator - Tuned-grid, tuned plate r.f. oscillator
in which the grid circuit controls the pulse duration.
Carrier frequency - The ultra-high frequency at which
a radar transmitter operates. Cathode follower - Distortionless,
impedance-matching, isolating stage.
Charged line - A pulse-shaping network which reflects
a steep-sided rectangular pulse of a duration determined
by the electrical constants of the line.
Clamping circuit - A circuit which holds either the positive
or negative amplitude extreme of a wave form to a given
reference level of voltage.
Crystal mixer - Mixing two frequencies by using the non-linear
characteristics of a crystal.
Cut-off limiting - Limiting action of an amplifier when
operated beyond the point of plate current cut-off.
D.C. restorer - See clamping circuit.
Delay circuit-Network or circuit which introduces a
time or phase delay of a wave form.
Differentiator circuit - A short time constant (RC) circuit
and amplifier which produces an output voltage with an amplitude
proportional to the rate of change of the input voltage.
A circuit used to sharpen a wave form sometimes called a
peaking circuit.
Dipole - A half-wave, center-fed radiating element.
Duty cycle - The fraction of a, complete radar cycle
during which energy is transmitted.
Echo - That part of the r.f. pulse reflected back to
the radar set by a target.
Electronic timer - The component of a radar set that
originates the pulse recurrence frequency, and synchronizes
the operation of other components with the radiation of
r.f. pulses by the transmitter.
Elevation angle - The angle of the target with respect
to the radar set and the horizontal plane of the earth.
Envelope - The general outline of a wave form.
Gate - A rectangular wave used to switch a circuit on
or off electronically during certain portions of the radar
operating cycle.
Grass - Static or noise appearing as intermittent, minute
interruptions of the oscilloscope time base.
Ground return - That part of the r.f. pulse reflected
by the ground surrounding the radar set.
Indicator - Any of several types of cathode ray oscilloscopes.
Indicator gate - See Gate.
Isolating circuit - A stage which passes signals in only
one direction through a circuit.
Klystron - A velocity modulated tube used to produce
low-power u.h.f. oscillations.
Lighthouse tube - A high-frequency triode of special
design used to produce u.h.f. oscillations of medium power.
Limiter - A circuit which limits, clips, or removes either
(or both) the positive or negative extremities of a wave
form.
Listening period - The time during which a radar transmitter
is quiescent or not radiating energy.
Magnetron - A high-frequency magnetic-field diode of
special design used to produce u.h.f. oscillations of very
high power.
Main pulse - See Transmitter pulse.
Master oscillator - A source pf timing oscillations which
control or affect all other radar circuits.
Microsecond - One millionth of a second.
Modulator - A circuit which directly controls or triggers
the radar transmitter.
Multivibrator - A relaxation oscillator which oscillates
of its own. accord (a free-running multivibrator), or which
oscillates only when triggered by an external voltage.
Overdriven amplifier - Amplifier circuit in which the
combination of cut-off limiting and saturation limiting
of a sine wave produce a rectangular voltage wave.
Peaking circuit - A differentiator circuit used to sharpen
a wave form.
Peak power - The maximum output power of an r.f. pulse
at the transmitter.
Presentation - The form in which radar echoes appear
visually on an oscilloscope.
Pulse - A sudden change of voltage (or current) of brief
duration.
Pulse duration - The time duration of a pulse.
Pulse generator - See Electronic timer.
Pulse rate - See Pulse recurrence frequency.
Pulse recurrence frequency or p.r.f. - The timing rate
of radar pulses, originating in the electronic timer.
Pulse recurrence time - The reciprocal of pulse recurrence
frequency.
Pulse width - See pulse duration.
Quiescent period - See Listening period.
R.F. oscillator - Output stage of the radar transmitter
in which u.h.f. oscillations are generated.
Range - The direct-line distance between a radar set
and a target.
Receiver - The component of a radar set which receives,
detects, and amplifies echoes reflected from targets.
Receiver gate - See Gate.
Recurrence rate - See Pulse recurrence frequency.
Reflector - A metallic object or surface behind a radiating
dipole to reinforce radiation in a desired direction.
Reflex Klystron - See Klystron.
Repetition rate - See Pulse recurrence frequency.
Ring oscillator - Any number of pairs of high-frequency
triodes operated as an r.f. oscillator in a tuned-grid tuned-plate
circuit.
Rotary spark gap - A pulse-protruding device in which
circularly arranged electrodes are rotated past a fixed
electrode producing periodic high-voltage arc discharges.
Saturation limiting - Limiting action of an amplifier
when operated beyond the point where grid current flows.
Scanning - The direction of pulsed r.f. energy over or
across a given region or area.
Sea return - That part of the r.f. pulse reflected by
water surrounding a sea-borne radar set.
Spark gap - An arrangement of two fixed electrodes between
which a high-voltage arc discharge takes place.
Squaring amplifier - See Overdriven amplifier.
Squegging oscillator - An extreme form of grid blocking
in an r.f. tuned-grid tuned-plate circuit.
Synchronism - The relationship between two or more periodic
or recurrent wave forms, when the phase difference between
them is zero.
Synchronizer - See Electronic timer.
T-R switch - A device which switches a radar antenna
between the radar transmitter and receiver, preventing transmitted
energy from reaching and damaging the receiver.
Tail - Attenuated decay of an r.f. pulse.
Target - Any object which produces a radar echo.
Time base - The trace produced on the screen of a cathode
ray tube by horizontal deflection of the electron beam.
Time constant - An indication of the speed with which
a circuit can be charged or discharged.
Timer - See Electronic timer.
Transmitter pulse - Burst of r.f. energy radiated by
the radar transmitter. The pulse appears as a strong signal
at the left end of the oscilloscope time base.
Unidirectional - In one direction only.
Video amplifier - A circuit amplifying a very wide range
of frequencies which includes and exceeds the audio range.
Wave guide - A hollow pipe or tube, having a circular
or rectangular cross-section, used to transmit r.f. energy.
|
R.F. Amplification
Probably most radar superheterodyne receivers use one or more
stages of r.f. amplification, but at extremely high frequencies
of operation this may be difficult.
However, we can assume that at least one stage of r.f. amplification
is generally used - sometimes two or three stages - providing a
considerable degree of pre-selection.
Because of noise disturbances, screen grid tubes are impracticable
for r.f. amplification in radar superheterodynes. Inductive reactance
of the cathode leads causes degeneration in the circuits associated
with such tubes.
Grounded-grid triodes offer advantages as r.f. amplifiers at
the lower frequencies of radar operation. If the input signal is
applied to the cathode, the plate-to-grid capacitance of the tube
then acts only as a plate load, instead of the conventional feedback
circuit. This absence of plate-to-grid capacitance is due to the
shielding action of the grounded grid.
At higher frequencies the Lighthouse tube has found considerable
use as an efficient r.f. amplifier. But in the extremely high ranges.
r.f. amplifier stages are seldom used in superheterodynes.
All of the u.h.f. circuit techniques discussed earlier in this
series on "Practical Radar" can be applied to this stage of the
receiver. Every piece of connecting wire, no matter how short, acts
as some portion of a transmission line. Lumped inductance and capacitance
are of far less importance than distributed inductance and capacitance,
and coaxial cables or wave guides are used to transfer r.f. energy
over any appreciable distance in the set.
Resonant circuits of the r.f. stages are of the fixed tuned type;
that is, the stages are adjusted to a given frequency of operation,
depending upon the carrier frequency of the radar transmitter. Tuning
can be accomplished by variable condensers.
R.f. chokes used in the plate and filament leads of the r.f.
amplifier tubes prevent leakage of the signal into the power supply.
Because of the high operating frequencies involved, low values of
inductance are required. The chokes may be formed from the interconnecting
leads which supply voltages to the different tube elements, a few
turns being sufficient for this purpose.
Every portion of the r.f. amplifier stage must be well shielded,
and the complete stage also shielded from the rest of the superheterodyne.
These, and many other "trick" u.h.f. techniques, could be employed
in radar receivers, in an effort to supply as much undistorted r.f.
amplification as possible to the echo signal before it is passed
to the frequency conversion stage of the radar superheterodyne.
Frequency Conversion
Mixing or frequency conversion could be accomplished in a radar
receiver by means of a separate local oscillator in a somewhat conventional
circuit. However, it should be noted that the output of this mixing
stage, the intermediate frequency, needs to be considerably higher
than in the usual u.h.f. superheterodynes.
At the lower operating frequencies of the r.f. spectrum, any
of several types of high-frequency tubes can be used as the "mixer"
with a stable local oscillator supplying the mixing frequency.
Link coupling between the mixer and local oscillator, and between
the mixer and the first i.f. amplifier stage, would obtain the optimum
degree of energy transfer between these stages. This method of coupling
prevents interaction between the circuits due to heavy loading,
such as would occur with other types of coupling.
Radio-frequency chokes would be as efficient in the power leads
to the mixer stage as in the r.f. amplifier stages previously described.
The local oscillator might use any type of stable oscillatory
circuit, and the tuning can be adjusted over a slight range of frequencies.
The local-oscillator frequency may be slightly higher or lower than
the r.f. signal, by an amount which represents the "difference"
or intermediate frequency.
Frequency conversion at the higher operating frequencies of the
u.h.f. spectrum becomes much more difficult and requires something
of a new philosophy of "mixing."
One type of local oscillator capable of generating a high frequency
for mixing purposes is known as the Klystron tube [Sperry] functioning
in a very simple circuit. Also known as a reflex Klystron, this
tube can generate radio waves of very short length.
The Klystron tube consists essentially of a cathode, a control
grid, a repeller electrode, and a resonant cavity. The tube operates
on the velocity-modulation principle, in which the transit time
of electrons between the resonator and the repeller is utilized.
Oscillations take place within the resonant cavity when properly
phased electrons pass between the resonator grids. This phasing
can be affected by the accelerating voltage of the electrons, the
voltage of the reflector, or the resonant frequency of the cavity.
Thus, anyone of these interrelated variables can be used to tune
and adjust the Klystron for operation at any desired local-oscillator
frequency.
I.F. Amplification
The large amount of gain required in a radar receiver is obtained
by considerable amplification of the intermediate frequency, thus
requiring a large number of i.f. amplifier stages.
The intermediate frequency may be quite high, while some radar
receivers function with a considerably lower i.f. signal. An important
factor governing the choice of intermediate frequency is the bandwidth
of the circuits.
The width of the frequency channel passed by the i.f. amplifier
is determined by the spectrum range of the returning echo signal.
Since reception of the signal is of the double-sideband variety,
this region allows for sufficient uniform amplification of all video
frequencies.
The frequency bandwidth must be fairly wide to pass all of the
component frequencies contained in the received r.f. signal. To
fix the bandwidth within acceptable limits, "damping" resistors
could be used in the i.f. circuits.
The sensitivity as well as the selectivity of the entire set
will suffer if the bandwidth of the i.f. amplifier is too wide.
Losses in the i.f. amplifier stages can be made almost negligible
by using very close coupling between the primary and secondary windings
of i.f. transformers.
In order to vary this coupling, the physical location of the
primary winding can be changed with respect to the secondary winding.
This coupling adjustment is particularly critical in the first stage
of i.f. amplification.
The first i.f. stage should be operated with the lowest possible
noise level, in an effort to obtain as high a signal-to-noise ratio
as possible.
Following stages of i.f. amplification may be primarily straight
i.f. amplifiers, operating under similar but not so exacting conditions
as the first stages. All i.f. stages are double-tuned.
Since gain values as high as 100 db. can be expected from the
combined stages of i.f. amplification, tendencies toward regeneration
must be carefully controlled by filters and proper shielding.
Lead shielding and filters can also prevent the receiver from
being oversensitive to strong external r.f. and a.f. fields.
Although the radar receiver is protected by the T-R switch (Fig.
1) from transmitter power surges, a small signal is permitted to
"leak through" the receiver in order to register as a strong pulse
- or "transmitter" pulse - at the beginning of the time base of
the indicator oscilloscope. This r.f. signal directly from the radar
transmitter may have a blocking effect each time the pulse passes
through the receiver. To counteract this possibility, a gate pulse
could be applied to the second i.f. amplifier stage.
The gate pulse consists of a rectangular voltage wave controlled
by the electronic timer. The wave would be applied to one or more
of the i.f. stages and could either bias the tube(s) to cut-off,
or completely remove the plate voltage during the time the transmitter
is pulsing. This, in effect, is a protective device to prevent the
i.f. stages from overloading due to the extremely powerful input
pulses from the transmitter.
After the desired degree of amplification has been obtained by
the i.f. stages of the radar receiver, the signal is detected -
probably by means of a conventional diode - and the rectified output
is then applied to the video stages of amplification.

Fig. 4. Detailed block diagram of radar superheterodyne receiver.
Video Amplification
An energizing voltage of from 50 to 200 volts peak with a bandwidth
of about three megacycles is required by most cathode-ray tube circuits.
It is the purpose of the video stages of amplification to supply
this wide range of frequencies at the desired voltage amplitudes.
Video-frequency amplifiers are usually resistance-coupled with
a characteristically almost-flat gain response over the entire range
of frequency operation, about three megacycles.
Video-frequency amplifiers have been developed which supply from
30 db. to 50 db. of gain per stage with bandwidths as great as two
megacycles. Use of the same circuits for bandwidths of about three
megacycles, lowers the amount of stage gain to about 25-35 db.
Some means of limiting the amplitude of the video output may
be provided, to prevent defocusing of the cathode-ray tube due to
strong signals. The output signal from the video amplifier is usually
a negative-going pulse, applied to the grid of the cathode-ray tube.
A positive-going pulse would be applied to the cathode of the indicator
tube.
The type of cathode ray oscilloscope used by the radar set would
not normally influence the nature of the output from the video amplifier
stage or stages.
Superregenerative Receiver
Another type of receiver offering radar possibilities is the
superregenerative receiver (Fig. 3).
A superregenerative oscillator forms the basis of this type of
receiver. Superregeneration takes place when oscillations are started
and stopped at an r.f. rate which is low in comparison with the
frequency of the generated voltage. This is accomplished by means
of a quench oscillator.
The incoming r.f. signal from the antenna is applied to the grid
of the superregenerative stage. Since the tube is operated in a
highly regenerative state, there will be very high amplification
of the signal during periods of oscillation.
Because of the limiting action of the circuit, the video output
doesn't depend on the strength of the input r.f. signal.
Although the sensitivity of a superregenerative receiver is very
high, its lack of stability, and other disadvantages, prevents wide
use in radar applications.
(To be continued)
Posted January 29, 2015
|