Search RFC: |                                     
Please support my efforts by ADVERTISING!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Alliance Test | Isotec
Please Support My Advertisers!
RF Cafe Sponsors
Aegis Power | Centric RF | RFCT
Empwr RF | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

kmblatt83@aol.com

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please Donate
RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering Workbook
Exodus Advanced Communications Best in Class RF Amplifier SSPAs - RF Cafe

Physics Base & Derived Units

These units are for general physical quantities not specifically related to electricity and magnetism. Below is a much more extensive list derived from the NIST website.

Here is a list of physical constants.

 

Name SI/Metric Symbol Constituent Units Area of Physics Named After
Abampere abA 10 A Electromagnetism -
Abcoulomb abC 10 C Electromagnetism -
Abhenry abH 10⁻⁹ H Electromagnetism -
Abohm abΩ 10⁻⁹ Ω Electromagnetism -
Abvolt abV 10⁻⁸ V Electromagnetism -
Ampere A - Electronics André-Marie Ampère
Ampere-hour Ah 3600 C Electronics -
Ampere-turn AT A·N Magnetism -
Angstrom Å 10⁻¹⁰ m Atomic Physics Anders Jonas Ångström
Astronomical Unit AU 1.496×10¹¹ m Astronomy -
Atmosphere atm 101325 Pa Fluid Mechanics -
Atomic Mass Unit u 1.661×10⁻²⁷ kg Atomic Physics -
Bar bar 10⁵ Pa Fluid Mechanics -
Barn b 10⁻²⁸ m² Nuclear Physics -
Barrel bbl 158.987 L Volume -
Becquerel Bq 1/s Nuclear Physics Henri Becquerel
Biot Bi 10 A Electromagnetism Jean-Baptiste Biot
British Thermal Unit BTU 1055.056 J Energy -
Bushel bu 35.239 L Volume -
Calorie cal 4.184 J Energy -
Candela cd - Optics -
Carat ct 0.2 g Mass -
Celsius °C K - 273.15 Thermodynamics Anders Celsius
Centigrade °C K - 273.15 Thermodynamics -
Chain ch 20.117 m Length -
Circular Mil cmil 5.067×10⁻¹⁰ m² Area -
Cord cd 3.625 m³ Volume -
Coulomb C A·s Electromagnetism Charles-Augustin de Coulomb
Curie Ci 3.7×10¹⁰ Bq Nuclear Physics Pierre Curie
Dalton Da 1.661×10⁻²⁷ kg Atomic Physics John Dalton
Day d 86400 s Time -
Decibel dB - Acoustics -
Degree ° π/180 rad Angular Measurement -
Degree Celsius °C K - 273.15 Thermodynamics Anders Celsius
Degree Fahrenheit °F (K × 9/5) - 459.67 Thermodynamics Daniel Gabriel Fahrenheit
Degree Rankine °R K × 9/5 Thermodynamics William John Macquorn Rankine
Dyne dyn g·cm/s² Mechanics -
Electron-volt eV 1.602×10⁻¹⁹ J Particle Physics -
Enthalpy H J Thermodynamics -
Entropy S J/K Thermodynamics -
Erg erg 10⁻⁷ J Energy -
Farad F C/V Electronics Michael Faraday
Fathom ftm 1.829 m Length -
Femtometer fm 10⁻¹⁵ m Nuclear Physics -
Fluid Ounce fl oz 29.574 mL Volume -
Foot ft 0.3048 m Length -
Foot-candle fc 10.764 lx Optics -
Foot-lambert fL 3.426 cd/m² Optics -
Foot-pound ft·lb 1.356 J Energy -
Furlong fur 201.168 m Length -
Gal Gal cm/s² Gravitation Galileo Galilei
Gallon gal 3.785 L Volume -
Gauss G 10⁻⁴ T Magnetism Carl Friedrich Gauss
Gilbert Gb 0.79577 A·m Magnetism William Gilbert
Grain gr 64.799 mg Mass -
Gram g 10⁻³ kg Mass -
Gray Gy J/kg Radiation Louis Harold Gray
Heat Capacity C J/K Thermodynamics -
Hectare ha 10⁴ m² Area -
Henry H Wb/A Electronics Joseph Henry
Hertz Hz 1/s Waves Heinrich Hertz
Hogshead hhd 238.481 L Volume -
Horsepower hp 745.700 W Energy -
Hour h 3600 s Time -
Hundredweight cwt 50.802 kg Mass -
Inch in 0.0254 m Length -
Inch of Mercury inHg 3386.389 Pa Fluid Mechanics -
Inch of Water inH₂O 249.089 Pa Fluid Mechanics -
Internal Energy U J Thermodynamics -
Joule J N·m Energy James Prescott Joule
Katal kat mol/s Biochemistry -
Kelvin K - Thermodynamics Lord Kelvin
Kilocalorie kcal 4184 J Energy -
Kilogram kg - Mass -
Kilojoule kJ 10³ J Energy -
Kilometer km 10³ m Length -
Kilopascal kPa 10³ Pa Fluid Mechanics -
Kilowatt kW 10³ W Energy -
Kilowatt-hour kWh 3.6×10⁶ J Energy -
Knot kn 1.852 km/h Navigation -
Lambert L 10⁴ cd/m² Optics Johann Heinrich Lambert
League lea 4.828 km Length -
Light-year ly 9.461×10¹⁵ m Astronomy -
Liter L 10⁻³ m³ Volume -
Lumen lm cd·sr Optics -
Luminous Intensity Iv cd Optics -
Lux lx lm/m² Optics -
Maxwell Mx 10⁻⁸ Wb Magnetism James Clerk Maxwell
Meter m - Length -
Metric Ton t 1000 kg Mass -
Microgram µg 10⁻⁹ kg Mass -
Micrometer µm 10⁻⁶ m Length -
Micron µ 10⁻⁶ m Length -
Mil mil 0.0254 mm Length -
Mile mi 1609.344 m Length -
Millibar mbar 100 Pa Fluid Mechanics -
Milligram mg 10⁻⁶ kg Mass -
Millimeter mm 10⁻³ m Length -
Millimeter of Mercury mmHg 133.322 Pa Fluid Mechanics -
Millisecond ms 10⁻³ s Time -
Minute min 60 s Time -
Mole mol - Chemistry -
Nautical Mile nmi 1852 m Navigation -
Newton N kg·m/s² Mechanics Isaac Newton
Ohm Ω V/A Electronics Georg Ohm
Ounce oz 28.350 g Mass -
Pascal Pa N/m² Fluid Mechanics Blaise Pascal
Peck pk 8.810 L Volume -
Pica P 4.233 mm Typography -
Pint pt 0.473 L Volume -
Planck Charge qₚ 1.876×10⁻¹⁸ C Quantum Physics Max Planck
Planck Length ℓₚ 1.616×10⁻³⁵ m Quantum Physics Max Planck
Planck Mass mₚ 2.176×10⁻⁸ kg Quantum Physics Max Planck
Planck Temperature Tₚ 1.417×10³² K Quantum Physics Max Planck
Planck Time tₚ 5.391×10⁻⁴⁴ s Quantum Physics Max Planck
Point pt 0.353 mm Typography -
Pound lb 453.592 g Mass -
Pound-force lbf 4.448 N Mechanics -
Pound-force per Square Inch psi 6894.757 Pa Fluid Mechanics -
Quantity of Heat Q J Thermodynamics -
Quart qt 0.946 L Volume -
Radian rad - Angular Measurement -
Radiant Energy Qe J Radiometry -
Radiant Intensity Ie W/sr Radiometry -
Radiant Power (Flux) Φe W Radiometry -
Rankine °R K × 9/5 Thermodynamics William John Macquorn Rankine
Rayleigh R 10¹⁰ photons/(m²·s) Optics Lord Rayleigh
Rem rem 0.01 Sv Radiation -
Rod rd 5.029 m Length -
Roentgen R 2.58×10⁻⁴ C/kg Radiation Wilhelm Conrad Röntgen
Second s - Time -
Siemens S A/V Electronics Werner von Siemens
Sievert Sv J/kg Radiation Rolf Maximilian Sievert
Slug slug 14.594 kg Mass -
Sound Intensity I W/m² Acoustics -
Sound Energy Flux P W Acoustics -
Specific Heat Capacity c J/(kg·K) Thermodynamics -
Speed of Sound c m/s Acoustics -
Square Foot ft² 0.0929 m² Area -
Square Inch in² 6.452×10⁻⁴ m² Area -
Square Meter - Area -
Square Mile mi² 2.590×10⁶ m² Area -
Square Yard yd² 0.8361 m² Area -
Statampere statA 3.336×10⁻¹⁰ A Electromagnetism -
Statcoulomb statC 3.336×10⁻¹⁰ C Electromagnetism -
Statfarad statF 1.113×10⁻¹² F Electromagnetism -
Stathenry statH 8.988×10¹¹ H Electromagnetism -
Statohm statΩ 8.988×10¹¹ Ω Electromagnetism -
Statvolt statV 299.792 V Electromagnetism -
Stilb sb 10⁴ cd/m² Optics -
Stone st 6.350 kg Mass -
Stokes St cm²/s Fluid Mechanics George Gabriel Stokes
Tablespoon tbsp 14.787 mL Volume -
Teaspoon tsp 4.929 mL Volume -
Tesla T Wb/m² Magnetism Nikola Tesla
Therm thm 1.055×10⁸ J Energy -
Thermal Conductivity k W/(m·K) Heat Transfer -
Time Constant τ s Electronics/Dynamics -
Ton ton 1016.047 kg Mass -
Torr Torr 133.322 Pa Fluid Mechanics Evangelista Torricelli
Troy Ounce oz t 31.103 g Mass -
Troy Ounce oz t 31.103 g Mass -
Watt W J/s Energy James Watt
Weber Wb V·s Magnetism Wilhelm Eduard Weber
Week wk 604800 s Time -
Yard yd 0.9144 m Length -
Year yr 3.154×10⁷ s Time -
Zeptosecond zs 10⁻²¹ s Time -
Zetta Z 10²¹ Metric Prefix -
Zettajoule ZJ 10²¹ J Energy -
Zettameter Zm 10²¹ m Length -
Zoll - 2.54 cm Length Old German unit

 


 

Name Base Unit Symbol
Enthalpy joule H
Entropy joule/Kelvin S
Heat capacity joule/Kelvin C
Internal energy joule U
Luminous intensity candela I
Quantity of heat joule Q
Radiant energy joule W
Radiant intensity watt/steradian I
Radiant power (flux) watt P
Sound intensity watt/meter I
Sound energy flux watt W
Specific heat capacity joule/(kilogram * Kelvin) c
Speed of sound meter/second n
Thermal conductivity watt/(meter * Kelvin) l
Time Constant s t

Here is a much greater list of units from the NIST Reference on Constants, Units, and Uncertainty. This information is in the public domain.

SI Base Units

The SI is founded on seven SI base units for seven base quantities assumed to be mutually independent, as given in Table 1.

Table 1.  SI base units

Base Quantity SI Base Unit
Name Symbol
length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

For detailed information on the SI base units, see Definitions of the SI base units and their Historical context.

SI derived units

Other quantities, called derived quantities, are defined in terms of the seven base quantities via a system of quantity equations. The SI derived units for these derived quantities are obtained from these equations and the seven SI base units. Examples of such SI derived units are given in Table 2, where it should be noted that the symbol 1 for quantities of dimension 1 such as mass fraction is generally omitted.

Table 2.  Examples of SI derived units

Derived Quantity SI Derived Unit
Name Symbol
area square meter m2
volume cubic meter m3
speed, velocity meter per second m/s
acceleration meter per second squared m/s2
wave number reciprocal meter m-1
mass density kilogram per cubic meter kg/m3
specific volume cubic meter per kilogram m3/kg
current density ampere per square meter A/m2
magnetic field strength  ampere per meter A/m
amount-of-substance concentration mole per cubic meter mol/m3
luminance candela per square meter cd/m2
mass fraction kilogram per kilogram, which may be

      represented by the number 1

kg/kg = 1

For ease of understanding and convenience, 22 SI derived units have been given special names and symbols, as shown in Table 3.

Table 3.  SI derived units with special names and symbols

Derived Quantity SI Derived Unit
Name Symbol Expression

in terms of

other SI units

Expression

in terms of

SI base units

plane angle radian (a) rad   - m·m-1 = 1 (b)
solid angle steradian (a) sr (c)   - m2·m-2 = 1 (b)
frequency hertz Hz   - s-1
force newton N   - m·kg·s-2
pressure, stress pascal Pa N/m2 m-1·kg·s-2
energy, work, quantity of heat joule J N·m m2·kg·s-2
power, radiant flux watt W J/s m2·kg·s-3
electric charge, quantity

     of electricity

coulomb C   - s·A
electric potential difference,

electromotive force

volt V W/A m2·kg·s-3·A-1
capacitance farad F C/V m-2·kg-1·s4·A2
electric resistance ohm Omega V/A m2·kg·s-3·A-2
electric conductance siemens S A/V m-2·kg-1·s3·A2
magnetic flux weber Wb V·s m2·kg·s-2·A-1
magnetic flux density tesla T Wb/m2 kg·s-2·A-1
inductance henry H Wb/A m2·kg·s-2·A-2
Celsius temperature degree Celsius °C   - K
luminous flux lumen lm cd·sr (c) m2·m-2·cd = cd
illuminance lux lx lm/m2 m2·m-4·cd = m-2·cd
activity (of a radionuclide) becquerel Bq   - s-1
absorbed dose, specific energy

    (imparted), kerma

gray Gy J/kg m2·s-2
dose equivalent (d) sievert Sv J/kg m2·s-2
catalytic activity katal kat s-1·mol

(a) The radian and steradian may be used advantageously in expressions for derived units to distinguish between quantities of a different nature but of the same dimension; some examples are given in Table 4.

(b) In practice, the symbols rad and sr are used where appropriate, but the derived unit "1" is generally omitted.

(c) In photometry, the unit name steradian and the unit symbol sr are usually retained in expressions for derived units.

(d) Other quantities expressed in sieverts are ambient dose equivalent, directional dose equivalent, personal dose equivalent, and organ equivalent dose.

 

For a graphical illustration of how the 22 derived units with special names and symbols given in Table 3 are related to the seven SI base units, see relationships among SI units.

Note on degree Celsius. The derived unit in Table 3 with the special name degree Celsius and special symbol °C deserves comment. Because of the way temperature scales used to be defined, it remains common practice to express a thermodynamic temperature, symbol T, in terms of its difference from the reference temperature T0 = 273.15 K, the ice point. This temperature difference is called a Celsius temperature, symbol t, and is defined by the quantity equation

t= T- T0.

The unit of Celsius temperature is the degree Celsius, symbol °C. The numerical value of a Celsius temperature t expressed in degrees Celsius is given by

t/°C = T/K - 273.15.

It follows from the definition of t that the degree Celsius is equal in magnitude to the kelvin, which in turn implies that the numerical value of a given temperature difference or temperature interval whose value is expressed in the unit degree Celsius (°C) is equal to the numerical value of the same difference or interval when its value is expressed in the unit kelvin (K). Thus, temperature differences or temperature intervals may be expressed in either the degree Celsius or the kelvin using the same numerical value. For example, the Celsius temperature difference Deltat and the thermodynamic temperature difference DeltaT between the melting point of gallium and the triple point of water may be written as Deltat = 29.7546 °C = DeltaT = 29.7546 K.

The special names and symbols of the 22 SI derived units with special names and symbols given in Table 3 may themselves be included in the names and symbols of other SI derived units, as shown in Table 4.

Table 4.  Examples of SI derived units whose names and symbols include SI derived units with special names and symbols

Derived Quantity SI Derived Unit
Name Symbol
dynamic viscosity pascal second Pa·s
moment of force newton meter N·m
surface tension newton per meter N/m
angular velocity radian per second rad/s
angular acceleration radian per second squared rad/s2
heat flux density, irradiance watt per square meter W/m2
heat capacity, entropy joule per kelvin J/K
specific heat capacity, specific entropy joule per kilogram kelvin J/(kg·K)
specific energy joule per kilogram J/kg
thermal conductivity watt per meter kelvin W/(m·K)
energy density joule per cubic meter J/m3
electric field strength volt per meter V/m
electric charge density coulomb per cubic meter C/m3
electric flux density coulomb per square meter C/m2
permittivity farad per meter F/m
permeability henry per meter H/m
molar energy joule per mole J/mol
molar entropy, molar heat capacity joule per mole kelvin J/(mol·K)
exposure (x and gamma rays) coulomb per kilogram C/kg
absorbed dose rate gray per second Gy/s
radiant intensity watt per steradian W/sr
radiance watt per square meter steradian W/(m2·sr)
catalytic (activity) concentration katal per cubic meter kat/m3
Exodus Advanced Communications Best in Class RF Amplifier SSPAs - RF Cafe