Search RFC: |                                     
Please support my efforts by advertising!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!

Aegis Power | Centric RF | RFCT
Alliance Test | Empower RF
Isotec | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please DONATE

RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering WorkbookCafe Press
LadyBug LB5954L Power Sensor with LAN Option - RF Cafe

Square Wave Voltages - Vpk, Vpk-pk, Vavg, Vrms

When plotted as voltage (V) as a function of phase (θ), a square wave looks similar to the figure to the right. The waveform repeats every 2π radians (360°), and is symmetrical about the voltage axis (when no DC offset is present). Voltage and current exhibiting cyclic behavior is referred to as alternating; i.e., alternating current (AC). One full cycle is shown here. The basic equation for a square wave is as follows:

Vcos for one complete cycle - RF Cafe

There are a number of ways in which the amplitude of a square wave is referenced, usually as peak voltage (Vpk or Vp), peak-to-peak voltage (Vpp or Vp-p or Vpkpk or Vpk-pk), average voltage (Vav or Vavg), and root-mean-square voltage (Vrms). Peak voltage and peak-to-peak voltage are apparent by looking at the above plot. Root-mean-square and average voltage are not so apparent.

Also see Sinewave Voltages and Triangle Wave Voltages page.

Square wave voltages : rms, average, peak, peak-peak - RF CafeRoot-Mean-Square Voltage (Vrms)

As the name implies, Vrms is calculated by taking the square root of the mean average of the square of the voltage in an appropriately chosen interval. In the case of symmetrical waveforms like the square wave, a quarter cycle faithfully represents all four quarter cycles of the waveform. Therefore, it is acceptable to choose the first quarter cycle, which goes from 0 radians (0°) through π/2 radians (90°).

Vrms is the value indicated by the vast majority of AC voltmeters. It is the value that, when applied across a resistance, produces that same amount of heat that a direct current (DC) voltage of the same magnitude would produce. For example, 1 V applied across a 1 Ω resistor produces 1 W of heat. A 1 Vrms square wave applied across a 1 Ω resistor also produces 1 W of heat. That 1 Vrms square wave has a peak voltage of 1 V, and a peak-to-peak voltage of 2 V.

Since finding a full derivation of the formulas for root-mean-square (Vrms) voltage is difficult, it is done here for you.

Vrms formula - RF Cafe

       Vrms equation - RF Cafe

 So, Vrms = Vpk

Average Voltage (Vavg)

As the name implies, Vavg is calculated by taking the average of the voltage in an appropriately chosen interval. In the case of symmetrical waveforms like the square wave, a quarter cycle faithfully represents all four quarter cycles of the waveform. Therefore, it is acceptable to choose the first quarter cycle, which goes from 0 radians (0°) through π/2 radians (90°).

As with the Vrms formula, a full derivation for the Vavg formula is given here as well.

Vavg formula - RF Cafe

       Vavg equation - RF Cafe

So, Vavg = Vpk

* I have no idea why we write "Sinewave," but not "Trianglewave" and "Squarewave."

LadyBug LB5954L Power Sensor with LAN Option - RF Cafe