Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising Magazine Sponsor RF Cafe RF Electronics Symbols for Visio RF Electronics Symbols for Office Word RF Electronics Stencils for Visio Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Anritsu Alliance Test Equipment Amplifier Solutions Anatech Electronics Axiom Test Equipment Berkeley Nucleonics Bittele Centric RF Conduct RF Copper Mountain Technologies Empower RF everything RF Exodus Advanced Communications Innovative Power Products ISOTEC KR Filters Lotus Systems PCB Directory Rigol San Francisco Circuits Reactel RFCT TotalTemp Technologies Triad RF Systems Windfreak Technologies Withwave LadyBug Technologies Wireless Telecom Group Sponsorship Rates RF Cafe Software Resources Vintage Magazines Thank you for visiting RF Cafe!
RF Cascade Workbook 2018 - RF Cafe

Stacked Array for Television
October 1948 Radio & Television News Article

October 1948 Radio & TV News
October 1948 Radio & Television News Cover - RF Cafe[Table of Contents]

Wax nostalgic about and learn from the history of early electronics. See articles from Radio & Television News, published 1919-1959. All copyrights hereby acknowledged.

TV antennas in the early days of broadcast television were typically fairly simple designs that worked well for city dwellers and anyone living within a few tens of miles of the tower, but rural dwellers struggled for a good signal. Even urban and suburban TV owners had problems with multipath reception that created ghost images on the display. The farm folks needed the high gain of a more complex antenna for pulling small signals out of the noise, while urbanites needed high directivity to be able to reject signals that were bouncing off buildings and bridges before combining in the receiver to produce multiple versions of the picture. Unlike today where relatively small, compact antennas with a low noise preamplifier at the antenna (see my Able Signal antenna write-up) does a pretty nice job of guaranteeing a good signal, large structures with many large elements were needed. Recall photos of building rooftops in a large city that were chock full of TV antennas. This article describes a means of stacking multiple identical antennas vertically for achieving additional gain with careful phasing of the transmission lines between them.

Stacked Array for Television

By Edward M. Noll

Temple University

Stacked Array, October 1948 Radio & Television News - RF CafeHorizontal antenna elements stacked vertically concentrate sensitivity at low vertical angles to correspond with the low angle of arrival of the television signals. At high frequency all high angle radiation is useless because it penetrates the ionosphere. Radiation at low vertical angles with respect to the horizon contributes the useful line-of-sight signal and extended line-of-sight signal. If the receiving antenna is designed with peak sensitivity at low angles we not only benefit from stronger signals but have a much improved signal-to-noise ratio because the antenna cancels noises arriving from above or beneath.

Stacked antennas are usually connected in phase, Fig. 1, to produce an additive signal at the transmission line. Noise components arriving above or beneath strike one element first and then, a half-wave later, a second, resulting in cancellation. The desired signal strikes broadside exciting both elements in-phase and by proper transmission line connection becomes additive. Two methods are shown. In the first drawing, feeders are transposed between elements putting both signals in-phase at the point the transmission line is attached. This system depends on half-wave spacing to give polarity shift. A second method is to feed at the center-point which will keep the transmission line point of connection the same distance from each element. This latter method is not as frequency-critical as the former.

Parasitic elements and various types of driven elements can be used. Fig. 1 shows stacked folded dipoles with reflectors. Whenever two in-phase elements are paralleled antenna resistance is halved.

For the stacked antenna shown 300-ohm line would run between elements and it would be opened at the center for attachment of the 150-ohm line for ideal match. Again it is important to stress that if the receiver has only a 300-ohm input match the receiver and let any mismatch which must occur be at the antenna.

Fig. 1



Posted May 5, 2017

Anatech Electronics RF Microwave Filters - RF Cafe
Exodus Advanced Communications Best in Class RF Amplifier SSPAs
Innovative Power Products Passive RF Products - RF Cafe
PCB Directory (Manufacturers)
TotalTemp Technologies (Thermal Platforms) - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free


About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024


    Kirt Blattenberger,


RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website: