Having never been a sports aficionado, I
have not spent much money or time at baseball, football, or soccer fields, hockey
rinks, bowling alleys, curling sheets, or basketball courts. When an air show comes
to town, however, I'm there. I'll stand in line for 45 minutes to tour the inside
of a DC-3, B-25, B-17, PBY-5, or just about anything that will admit me. What is
particularly enjoyable is being able to inspect the radio equipment racks and bays. The sight
and smell (I consider it an aroma) of the old UHF and VHF sets, recording equipment,
power supplies, generators, synchros, and the associated wiring and connectors is
something I never tire of experiencing. I always imagine the men who operated and
maintained everything doing their assigned duties to keep those wonderful machines
flying. Maybe you know of what I write. This article provides a nice overview of
the state of the art for airborne electronics in the post WWII era. A couple photos
are included here.
Dig the Zenith console radio that I found
lashed into in a C-54!
Funny anecdote: A couple years ago Melanie
and I were standing in line at the Erie Airshow waiting to crawl (literally) through
a B-25. The fellow in front of us was rather portly and I wondered whether he would
be able to squeeze through the area in the mid fuselage that separated the front
and rear portions of the airplane. Up the ladder he climbed and got a few photos
of the cockpit area. Then, he turned to proceed to the rear and I could see his
visage fall as he was confronted with the narrow passageway behind him. The poor
guy had to back down the ladder and give up his hopes of seeing the rear gunner
position and some of the bomb bay mechanisms. Fortunately for him, there are plenty
of pictures online of anything he missed.
One of American Airlines' postwar fleet of DC-6's.
By James Holahan*
A brief review of the field of aircraft
radio, covering the nature of the work, the necessary qualifications for entering
this field, and the available opportunities. The various types of radio equipment
found in modern commercial planes are also discussed.
In the few brief years that comprise the history of aviation the expansion of
air travel has been tremendous. The blockade of Berlin has proven to the world that
life in a modern metropolis can, in an emergency, be sustained through the medium
of air transport, in spite of the hazards of weather.
Throughout the United States hundreds of airfields, built by the military for
training, are now serving in a commercial capacity as municipal airports. Few populated
areas in the country are farther than a short drive from a local landing field.
Foreign travel, too, has expanded. Giant wings and powerful engines are shrinking
distances, formerly measured in weeks, into hours.
With this expansion of air travel new opportunities are opening up for the radio
technician and electronic specialist.
A few of the radio operators employed by Trans World Air Lines.
On these men fall the responsibility of transmitting important weather and flying
data which keeps the planes aloft and, safe during bad weather and good, clear skies
and overcasts.
Practically every aircraft in use today, both privately and commercially, carries
some form of radio equipment ranging from a single receiver to complete racks of
electronic gear.
Modern day flying has placed radio in the "essential" class. Improperly functioning
radios are not only useless but hazardous because such great dependence is placed
upon them.
This was pointed out as far back as 1929 in an article by an unnamed manager
of the National Air Transport Company, when he wrote:
"There is no question as to the assistance that radio can give the air transport
pilot. The problem is to insure against failure of the system. A catastrophe may
easily be caused if the pilot relies on radio and it fails him for one cause or
another. It would be far better if he had no radio at all."
These were the days when flying was in its infancy and many airmen used radio
with caution and distrust. Today our entire system of instrument flying is built
around radio. Complete radio failure in an airplane could result in disaster not
only to the occupants of the affected aircraft but to other aircraft in the vicinity.
The use of radio in aircraft has transformed the airplane from a contraption
reserved for daredevils to an instrument of commercial utility. It permits the pilot
to fly through the worst weather without reference to the ground. It gives him a
course to follow and enables him to keep in contact with ground stations and other
aircraft.
Aircraft radio may be divided into two categories, communications and navigation.
The radio gear carried on any aircraft is used for one or both of these purposes.
The radio installation in the "Convair." This 300 m.p.h. 40-passenger
plane has a built-in loading ramp, a cruising range of 800 miles, and an air-conditioned
cabin.
The communications category includes voice transmission and reception of pertinent
messages, such as takeoff and landing instructions, flight plans, weather information,
emergency calls, etc. On long trips away from ground stations, such as on transoceanic
flights, c.w. is used.
The aircraft receives these voice and c.w. messages on the aircraft band (200-400
kc.) or on v.h.f. (100-150 mc. voice only) and transmits on a variety of medium
high frequencies between 3 and 9 mc. with 3105 kc. and 6210 kc. being most frequently
used in the United States. Communications from air to ground are also transmitted
on any of the allotted channels between 100 and 150 mc.
Air navigation by radio requires more of a discussion. An extensive system of
radio aids to navigation, which form the civil airways of the United States, is
maintained by the Civil Aeronautics Authority, an agency of the Department of Commerce.
The principal component of this system is the radio range station.
A radio range station consists of a transmitter emitting a carrier on an assigned
frequency in the aircraft band. It has two independent r.f. channels differing in
frequency by 1020 cycles, controlled by matched crystal oscillators. The antenna
system is comprised of two crossed Adcock antennas that are 90 degrees in space
with respect to each other, together with a center vertical antenna. The central
tower is constantly fed by the output of one r.f. channel while the output of the
other is switched from one Adcock antenna to the other. First the code letter "A"
is fed to one Adcock then an "N" is fed to the other. A receiver monitoring these
signals will pick up the 1020 cycle beat note which corresponds to the difference
between the r.f. channels. A steady tone is heard whenever the energy from the two
antenna systems is received with equal intensity. This is called the "on course"
or beam. Each range station produces four beams, the direction of which is controlled
by the directional antenna systems. These beams give the pilot a definite course
to follow toward or away from the station. In the sectors between the courses either
an "A" or "N" is received depending upon what quadrant the plane receiving the signal
may be in.
The v.h.f. transmitting and receiving equipment installed in
a Beach Bonanza baggage compartment.
A 4-place Stinson, a private aircraft, showing rotatable loop
antenna.
Actually the civil airways are aerial routes whose courses are determined by
these beams. While flying on the airways the pilot is aware of his position with
respect to the range station, which he can locate on his map, from the type and
intensity of the received signal. The point directly over the range station is identified
by the lack of signal because the vertical antenna system used will radiate negligible
energy directly upward. This "no signal" area widens with height and for that reason
is called the "cone of silence." On most ranges the cone is further identified by
a "Z" marker, operating on a frequency of 75 mc., which constantly keys the letter
"Z". A special receiver is necessary to pick up this signal.
An important piece of equipment for radio navigation is the loop antenna.
We all know the directional qualities of a loop. For instance, a portable radio
with a loop antenna will receive the maximum signal when the plane of the loop is
in line with the station and minimum signal when the plane of the loop is at right
angles to the station.
This same principle is used in navigation. In its simplest form, the loop is
used with a receiver as an extra antenna which may be switched into the circuit
for direction finding.
More elaborate receivers employ amplifiers and balancing networks which greatly
increase the loop's sensitivity.
The loop is the heart of the radio compass or, as it is also called, the automatic
direction finder. The operation of an ADF is simple - just tune in the desired station,
identify it, flip a switch and a needle, mounted on a 360 degree azimuth scale,
points to the angular direction of the station relative to the aircraft.
Formerly the radio compass, because of its weight, was confined to large aircraft
only. Now a manufacturer has come out with an ADF weighing 24 lbs. including the
power supply.
About the latest thing in radio navigation is the omnidirectional range which
will soon be in operation all over the country. These ranges operate in the v.h.f.
spectrum between 90 and 110 mc. In contrast to the low frequency ranges which present
four beams or pathways to the station, the omnirange allows the aircraft to come
in "on the beam" in any direction. The aircraft having this equipment installed
will have a "To-From" indicator which tells the pilot whether he is going toward
or away from the station he is working. On the low frequency ranges the pilot determines
this from the build or fading of signal strength which can often be difficult in
times of poor reception due to precipitation static and the like.
For navigating great distances by radio, such as in transoceanic flying, a system
called "loran" is used. The name is a coined word derived from the words LOng RAnge
Navigation. Developed during the war, this system is composed of a receiver operating
on a band just above the broadcast frequencies. There is no audio. Pips appearing
on the face of the cathode-ray tube furnish visual information, which when applied
to special loran charts gives very accurate fixes. The only installation required
in the aircraft is the loran receiver.
Ground installations consist of several pairs of transmitting stations operating
on the same frequency. In each pair one is termed the "master" the other the "slave"
station. The system is based upon the microsecond interval between the reception
of the signals emitted by the master and the slave.
A navigator, specially trained in the loran method of navigation, is required
to operate this system. It is possible to obtain accurate fixes from stations up
to 1500 miles distant by means of loran.
The instrument landing system may also be included in the navigation category.
Two receivers and an instrument panel indicator comprise the main components of
the ILS equipment as it is installed in the aircraft.
One receiver, the localizer, operates on any of six crystal-controlled frequencies
located between 108 mc. and 110 mc. This receiver tells the pilot, through movements
of a vertical needle of a specially designed micro ammeter, whether he is to the
right or left of the runway. Actually the needle is differentiating between an area
of 150 cycle modulation and 90 cycle modulation.
The path of descent can be seen in the movement of a horizontal needle of another
micro ammeter utilizing the same meter face as the vertical needle. A glide path
receiver controls the movement of the horizontal needle. It operates on three crystal-controlled
channels between 332 mc. and 335 mc. The glide path signal when modulated by 150
cycles will indicate position above the correct path while 90 cycle modulation is
used to show position below the correct path.
Also used for blind landings is the much publicized GCA-ground controlled approach.
All the equipment that is needed in the aircraft in order to use this system is
voice communication between the pilot and ground. The path of the aircraft is accurately
plotted and the pilot is literally talked into a landing by ground operators.
The instrument panel of the DC-6. Much of the responsibility
for the safe operation of such sky giants rests with radio equipment.
An over-all view of American Airlines' radio overhaul shop.
As mentioned in the article, the large commercial outfits stress preventive
maintenance and subject all radio equipment to periodic and thorough checks.
Non-directional radio beacons and marker beacons are two more of the facilities
offered by the Federal airways system. The former is simply a station transmitting
a continuous carrier in the aircraft band interrupted by regular station identifications.
It is used only with direction finders as a homing aid.
Marker beacons are vertically directed signals on 75 mc. These are located along
the "on course" of low frequency radio ranges. They enable the pilot to definitely
establish his position while flying the ranges.
Thus it may be seen that the present day aircraft is well equipped with radio
gear. In flying, radio is essential. Just as essential is the personnel which maintains
this equipment.
Commercial operators (airlines, flight schools, charter companies, etc.) and
most private owners who engage in regular and frequent flights away from their home
airport have their radios checked periodically.
Scheduled airlines probably have as complete a radio maintenance system as can
be found in the aviation industry. Here all radio equipment is given periodic checks
according to the number of hours which the ship has flown. There are checks approximately
every 25 hours. Each succeeding check involves more operations until, at the end
of a set period of time, say 2000 hours, all the radio gear is removed for overhaul
and bench checks.
Aviation companies have found that it doesn't pay to wait until a unit breaks
down before servicing it - preventive maintenance is the watchword. Those used to
servicing home sets would find aircraft radio quite different in this respect -
less than half the time is spent repairing defective units; more time is consumed
looking for troubles before they cause the delay of a flight.
The more technical aspects of an aircraft radioman's job involve making new installations
and modifying certain types (especially surplus) radio equipment, either to improve
performance or to conform with government regulations. In large companies very little
of the installation or conversion work is left to the initiative of the technician.
In small outfits the success of the installations and conversions is largely dependent
upon the skill of the technician.
The qualifications necessary for an aircraft radio technician can be summed
up in five basic requirements:
1. Technical knowledge. He must possess a high degree of widely diversified theoretical
and practical knowledge of radio.
2. Mechanical ability. He must be able to work well with tools and be fairly
skillful in designing and building things of a mechanical nature.
33. Familiarity with aircraft. Since most of the equipment is installed in aircraft,
familiarity with the location of the power sources, switches, controls, etc., are
of vital importance.
4. Physical fitness. This work involves a good deal of climbing in and out of
tight places, much walking, and lugging of heavy equipment.
5. FCC license. A 2nd class phone is the minimum license requirement. If a man
has the proper technical knowledge all the preparation needed to pass this exam
is a study of the FCC regulations governing the holders of commercial licenses.
However, a review of a "question and answer" book (sold at most technical book stores)
for this exam, might prove helpful to those who might be rusty on theory.
Now, providing a man has the proper qualifications, the next step would be applying
for a position. Let us consider the main sources of employment. There are five.
1. Scheduled airlines
2. Non-scheduled airlines
3. Maintenance and overhaul shops
4. Civil service
5. Own business
The scheduled airlines hire the bulk of the personnel, each major airline having
in the neighborhood of 50 to 175 men over-all, doing radio work. The starting pay
is fair - about $1.52 per hour with periodic increases governed by the length of
service. The work is shift work. Working conditions and equipment are excellent.
There is a strict union shop with its attendant seniority regulations.
The radio operator's station in a Douglas DC-4. Note the many
different types of radio equipment used in the operation of this craft.
The radio panel of the four-engined "Constellation." Because
the "Connie" is used for long, over-ocean flights the radio equipment includes c.w.
as well as phone equipment. Note the sending key in the right center of the photograph.
Non-scheduled airlines pay on a par with the scheduled lines but do not offer
the same security since the "non-scheds" have not as yet attained any form of inherent
stability.
The working conditions are just fair while ofttimes the equipment is worse. Here
more skill and versatility is required. Hours are frequently long and irregular.
However, experience is plentiful and the opportunities of high gains that go along
with new enterprise are ever present.
Maintenance and overhaul shops usually pay scheduled airline rates to the regular
technicians but the rates of the leadmen and foremen are somewhat higher. Here the
hours and working conditions depend upon many factors, such as the size and policy
of the particular shop.
Civil service positions are sometimes available in the aircraft radio field as
civilian technicians with the armed services and with the Civil Aeronautics Authority.
With the latter the work is for the most part installing and maintaining the
ground stations of the radio aids to aerial navigation that span the entire country.
Such positions for technicians pay between three and four thousand per year, depending
upon the classification of the work. Announcements of examinations for these positions
appear in the Civil Service periodicals.
Operating one's own business will offer opportunity only to those experienced
in aircraft radio as well as business techniques.
Not unlike similar ventures in the home sales-service field it offers advantages,
such as being your own boss, on the one side and disadvantages, like a seven day-ninety
hour week, on the other.
For the benefit of those considering an entry into this phase of electronics
let me outline briefly the future of aviation radio.
Aircraft radio's future is tied up with aviation. If aviation rises or falls
so will its electronic offspring.
Do not be deceived into thinking that aviation is the industry open to a chosen
few booted and goggled supermen where everything is booming and everybody carries
off a bucket of gold for his daily labors.
It is a new industry; in its short life it has had its share of depressing times
when many employees were furloughed. In the years since the war most of the companies
have lost money. Those that survived are beginning to get into the black and show
signs of an upward trend.
Showing the positioning of the radio compass loop in relation to the fuselage.
What can be definitely stated is that aviation is a young industry and that aviation
is here to stay.
There is a tremendous amount of wealth, both government and private, invested
in aviation.
In spite of all its fine achievements aircraft radio has its shortcomings; it
still has vast room for improvement.
Much of aviation's future is dependent upon the advancement of electronics.
How a radio signal is used to "home" a plane during adverse weather conditions.
Loop position characteristics.
The administrator of Civil Aeronautics, D. W. Rentzel, recently made the following
statement:
"The most urgent need of aviation today - civil and military - is a reliable,
all-weather navigation and landing system... The United States already has approximately
six billion dollars invested in civil airports. Because of weather these airports
are closed fifteen percent of the time ... The gravity of this situation, which
is a bottleneck to commercial aviation and a weak link in our national defense,
has been recognized in every group which has studied air transportation problems.
Both the President's Air Policy Commission report and the report of the Congressional
Aviation Policy Board emphasize the need for a safe, efficient, all-weather navigation
system, estimated at one hundred million dollars to implement and requiring fifteen
years until 1963 - to be placed in operation. This represents about five percent
of our present investment in aviation in the United States ... The system must accomplish
a task of almost fantastic complexity. Before the war, such a system could not have
been established. But new developments, such as radar and other electronic devices
using extremely high frequencies, have given us the tools which make such a system
possible."
*The author is a radioman who became a pilot in the USAAF during the war. At
the end of the war he was placed in charge of radio and radar maintenance at Rapid
City Army Air Base. Since separation from service he has been in the aircraft radio
field and is employed by Air Associates Inc.
Posted September 20,2021 (updated from original post on 9/3/2015)
|