Search RFCafe.com                           
      More Than 18,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils for Visio | RF Symbols for Visio
RF Symbols for Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits



KR Electronics (RF Filters) - RF Cafe

Windfreak Technologies Frequency Synthesizers - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Crane Aerospace Electronics Microwave Solutions

Parallel Resistance Chart
October 1958 Radio-Electronics

October 1958 Radio-Electronics

October 1958 Radio-Electronics Cover - RF Cafe[Table of Contents]

Wax nostalgic about and learn from the history of early electronics. See articles from Radio-Electronics, published 1930-1988. All copyrights hereby acknowledged.

If you have ever placed a fixed resistor in parallel with a potentiometer to reduce the total resistance, then you are familiar with how you also convert a linear relationship of the wiper movement with resistance to one that is nonlinear. That is because the equation changes from Rtotal = Rx:potentiometer (where x is the potentiometer position) to Rtotal = (Rx:potentiometer * Rparallel) / (Rx:potentiometer + Rparallel). The graph of it looks like one of the curves in this chart. Since the total parallel resistance is always smaller than the lowest value of the two resistances, the greater the ratio of the two is, the more dominant the smaller resistance value becomes. That means as the potentiometer wiper approaches the minimum resistance end of its travel, the parallel resistor attached across it has virtually no effect.

Since parallel-connected inductors and series-connected capacitors scale in the same manner as parallel-connected resistors, this chart is useful for those circuits as well. Series-connected resistors and inductors, and parallel-connected capacitors are simply the sums of their individual values. Consequently, if you connect a fixed resistor in series with a potentiometer, the total resistance at any position of the potentiometer wiper will be the linear sum of the fixed resistor and the potentiometer resistance. Got that?

* Theoretically, x is a value from 0 to 1 that represents the relative position of the potentiometer wiper contact.

Parallel Resistance Chart

Parallel Resistance Chart, October 1958 Radio-Electronics - RF CafeBy Rudolph Wellsand

To use the chart locate R1 along the top scale and R2 on the left-hand scale. Find the point where they meet on a curve. Trace the curve to the RT scale and read the answer. For total values of parallel inductance and series capacitance use the scales at the bottom and right hand edges. To extend the ranges of the scales, either multiply or divide each value in every scale by 1,000.

 

 

Posted June 9, 2022
(updated from original post on 1/4/2015)

Crane Aerospace Electronics Microwave Solutions


Innovative Power Products Passive RF Products - RF Cafe

Temwell Filters