Search RFCafe.com                           
      More Than 17,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils Visio | RF Symbols Visio
RF Symbols Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits

ConductRF Phased Matched RF Cables - RF Cafe

withwave microwave devices - RF Cafe

Innovative Power Products Passive RF Products - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Anritsu Test Equipment - RF Cafe

Spreading the Stations with CSSB
November 1957 Popular Electronics

November 1957 Popular Electronics

November 1957 Popular Electronics Cover - RF CafeTable of Contents

Wax nostalgic about and learn from the history of early electronics. See articles from Popular Electronics, published October 1954 - April 1985. All copyrights are hereby acknowledged.

It's hard to believe that even by the end of 1957, single-sideband broadcasting was still in its infancy. The claim that, "CSSB's most remarkable feature is that although it uses but one sideband, a broadcast will still sound the same to even the simplest home radio," is still a matter of dispute amongst radio aficionados. Just as many audiophiles swear that even the most sophisticated solid-state driver is not as good as a vintage vacuum tube circuit, there are those who say that single-sideband reception is clearly distinguishable from standard double-sideband. Doubt me? Here I quote from page 2-7 of the "ARRL General Class License Manual for Ham Radio, "SSB transmitters tend to optimize the signal characteristics for strength at the expanse of some fidelity. AM transmitters, on the other hand, tend to give a 'warmer' sound to the speaker's voice." QED

Compatible single-sideband system may double available AM broadcast band space

Spreading the Stations with CSSB - RF CafeBy Philip James

The harried Federal Communications Commission is keeping its fingers crossed. One of these days it may get a totally unexpected bonus in the way of doubled broadcasting space. Tests are under way with a completely new method of broadcasting that promises to allow "space" for many new stations.

The FCC's big trouble up to now has been those tricky little devils called "side-bands." Stations allotted an AM broadcast (or carrier) frequency must also be given added room on each side of the assigned frequency. This is because the two side-bands take up that room.

What Sidebands Are. These side frequencies normally are inescapable. They are created when the carrier is modulated with voice or music. It's because of the sidebands that you can pick up a station even if your receiver isn't tuned on the nose. However, if you were able to eliminate one of these sidebands, you would automatically cut down on the bandwidth needed for the station. That's what the new compatible single-sideband system (CSSB) does.

Personnel at the Voice of America installation in Munich, Germany adjust their receiving equipment - RF Cafe

Personnel at the Voice of America installation in Munich, Germany adjust their receiving equipment. VOA is now using the new compatible single-sideband technique. This is one of the few pictures ever released of an overseas Voice installation. Below is the adapter equipment developed by Leonard Kahn to transmit CSSB; it is located in the Kahn Research Labs test center, Freeport, N. Y.

Developed by Leonard Kahn, a young research engineer, the system essentially filters out one of the sidebands of the signal on transmission, theoretically doubling the bandspace available. Actually, because of technical complications, it would work out to only an 80% increase, which still would prove to be quite a help in relieving the overcrowded broadcast spectrum.

CSSB's most remarkable feature is that although it uses but one sideband, a broadcast will still sound the same to even the simplest home radio. It will be recalled that in standard single-sideband reception, receivers with a local oscillator to reinsert the carrier frequency must be used to receive an intelligible signal. Otherwise, you would get "Donald Duck" chatter.

Tested by VOA. One huge Voice of America station has been using CSSB in order to crack though Russian jamming. They found that it reduces interference and manages almost to double signal strength without increasing the size of the transmitter.

The American Broadcasting Company (ABC Radio Network) has been so impressed with the new system that it is planning a thorough tryout. Should the network consider the system a complete success, it would probably kick off the biggest race for new station permits since the inception of broadcasting. Areas now considered "full up" would no longer be so.

How CSSB Works

In the compatible single-sideband system, conventional SSB is first generated without a carrier in the usual manner. From this point, the system follows a new path.

The carrier is reinserted and then, with an adapter unit, the distortion which this process has introduced is cut out. It's done by changing the shape of the wave which has amplitude and phase modulation (and a high degree of distortion) into a non-distorted AM wave. The final result is a single-sideband wave with carrier almost completely lacking in distortion. Thus, it can be picked up by the ordinary AM receiver.

CW Carrier - RF Cafe     DSB AM Modulated Carrier - RF Cafe     SSB AM Modulated Carrier - RF Cafe     Frequency Modulation - RF Cafe

By using a spectrum analyzer, we see the ordinary c.w. or code signal as a single carrier in A. In B, we see the ordinary double-sideband AM wave with carrier as the taller center line and the two shorter lines on each side as the sidebands. C is the compatible single-sideband analysis. Actually, you get a choice of cutting off either the right or left sideband. In the conventional single-sideband analysis (not shown), the center (center line) would also be cut off; this, of course, requires a local oscillator to reintroduce the signal.

D shows a frequency-modulated wave analysis. Because of the constant change in frequency, however, these sidebands also change constantly, so that the picture is different at any given moment.

What is spectrum analysis? If a signal is examined using a relatively rare instrument known as a spectrum analyzer, we get a very different picture of what takes place during modulation, as seen in the scope traces above. Instead of the usual time-based trace, we get "spectra," in which the horizontal base line is a measure of increasing frequency rather than increasing time. A detailed description of the individual traces (A, B, C and D) is given in "How CSSB Works" at left.

Although the FCC could not permit too many new stations to go on the air, since that would defeat CSSB's purpose of wiping out interference, it would probably allow quite a few new ones.

Finer Tuning. For the listener, CSSB would mean that much finer tuning of a receiver is necessary. Right now you can pick up most stations 2 or 3 kc. away from the station's authorized frequency. That is, if a station is broadcasting at 1500 kc., you can get a pretty fair signal anywhere from 1498 to 1502 kc. - although the optimum signal is still at 1500 kc.

A station broadcasting with CSSB would use either the lower or upper of the two sidebands available to it. It could use either the area from 1490 to 1500 kc. or from 1500 to 1510 kc.-depending on which sideband it picks. If it picks the upper - 1500 to 1510 kc. - the listener would get optimum signal strength at about 1502 or 1503 kc., thus detuning slightly from the station's authorized frequency. However, if you should stay at 1500 kc., you would still get as good a signal as if the station were transmitting a standard double-sideband signal.

 

 

Posted April 1, 2021
(updated from original post on 4/1/2012)

Anritsu Test Equipment - RF Cafe
Amplifier Solutions Corporation (ASC) - RF Cafe

Innovative Power Products (IPP) RF Combiners / Dividers

Innovative Power Products (IPP) Directional Couplers