Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives Magazine Sponsor RF Cafe Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Alliance Test Equipment Centric RF Empower RF ISOTEC Reactel RF Connector Technology San Francisco Circuits Anritsu Amplifier Solutions Anatech Electronics Axiom Test Equipment Conduct RF Copper Mountain Technologies Exodus Advanced Communications Innovative Power Products KR Filters LadyBug Technologies Rigol TotalTemp Technologies Werbel Microwave Windfreak Technologies Wireless Telecom Group Withwave RF Cafe Software Resources Vintage Magazines RF Cafe Software WhoIs entry for RF Cafe.com Thank you for visiting RF Cafe!
Exodus Advanced Communications Best in Class RF Amplifier SSPAs

Cafe Press

Axiom Test Equipment - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

everythingRF RF & Microwave Parts Database (h1)

Build a Dual-Meter Transistor Tester
February 1960 Popular Electronics

February 1960 Popular Electronics

February 1960 Popular Electronics Cover - RF CafeTable of Contents

Wax nostalgic about and learn from the history of early electronics. See articles from Popular Electronics, published October 1954 - April 1985. All copyrights are hereby acknowledged.

Integrated circuits are the de facto standard of today, but 50+ years ago when this article was written for Popular Electronics magazine, individual transistors were all that was available to both hobbyists and professional engineers. Believe it or not, there are still a lot of applications in modern products that use discrete transistors for output stage drivers, buffers, and where parts costs might save a penny or two in high volume production. There are also, of course, millions of circuits in existence and in daily use that include transistors. This transistor tester will allow you to do a simple check to determine whether a particular device is still working, or whether some newer transistor might be a suitable replacement for one gone bad. The truth is, though, that unless you just really like to build circuits, you can buy a DMM with a built in transistor tester for $20- $30.

Build a Dual-Meter Transistor Tester

Build a Dual-Meter Transistor Tester, February 1960 Popular Electronics - RF Cafe

You can check both audio and power transistors with one easy-to-operate unit. 

By R. J. Shaughnessy

Sometimes you'll finish building a transistorized project and find that it doesn't work. It's easy enough to recheck your wiring, but if you do and the unit still doesn't work, then what? Were the transistors good before you put them in the circuit? Were they burned out accidentally? It's obvious that you need a transistor tester to check the transistors before you wire them into the circuit and to check them again if the circuit stops working.

This tester measures the two important characteristics of almost all audio and power transistors: current gain (Beta) and collector-to-base leakage (Ico). Only transistors which have a 5-ma. maximum collector current cannot be tested with this unit; see the manufacturer's data for special testing techniques for these low current jobs.

Two meters are built into the tester to allow the base current and the collector current to be monitored simultaneously under various bias settings. This monitoring feature enables a transistor to be tested under actual circuit load conditions.

For maximum flexibility, no sockets were incorporated in the tester proper. The transistor under test is simply connected by its leads to the tester terminals. An adapter which plugs into the tester's binding posts can be built which will accommodate the various types of power and audio transistor sockets. Parts used in the tester and optional adapter are not critical. With all new components, cost of the tester is about $15.

Build a Dual-Meter Transistor Tester Schematic - RF Cafe

Observe polarity of diodes and capacitors in tester power supply detail (left).

Transistor tester base current control R2 should be wired so that maximum resistance is obtained when ganged switch S1 is open.

Tester adapter has two sockets accommodating power transistors - RF Cafe

Tester adapter has two sockets accommodating power transistors and smaller audio transistors.


of the tester is begun by mounting all the components directly on the cabinet. Before mounting function switch S2, crimp all jumper leads to the switch terminals. After the switch is mounted, connect and solder the remaining leads to it.

The transistor tester adapter can be built into the smallest Minibox that will accommodate a standard three-lead transistor socket (in-line or circular type) and a power transistor socket. When a transistor is being tested, the adapter's banana plugs (which are connected to the appropriate pins on the transistor sockets) plug into the tester's universal binding posts.

Tester Parts List

CI, C2, C3, C4 - I60-μf., 15-volt capacitor

DI, D2-1N91 germanium diode (Sylvania) F1 , F2 -1/2-amp. 3AG fuse (to fit PL1)

MI-0-1 ma. meter (Shurite 950-9300Z)

M2-0-100 ma. meter (Shurite 950-9307)

PL1-Fuse plug (El-Menco EL-32)

R1-6800-ohm, 1/2-watt resistor

R2-150,000-ohm potentiometer (IRC QI3-328)

R3-1000-ohm, 1-watt resistor

R4, R5-33-ohm, 1/2-watt resistor

S1-On-off switch mounted on rear of R2 (IRC 76-1)

S2-Four-pole, four-position rotary switch (Centralab PA-1013)

T1-6.3-volt filament transformer (Triad F-13X)

1-7" x 5" x 3" Minibox (Bud CU-2108A)

3-Five-way binding posts

2-Pointer knobs

2-Six-lug terminal strips

Testing for leakage is simple. Rotate function switch S2 to Leakage N-P-N or Leakage P-N-P, depending on the transistor in question. Connect the transistor base lead to the tester's emitter binding post. Then connect the transistor collector to the collector binding post. Leave the transistor emitter lead unconnected. (The transistor emitter is left unconnected for all leakage measurements.) Now turn on the tester by advancing the Base Current potentiometer (R2). If the 0-100 ma. collector current meter (M2) is not deflected, the leakage current is within acceptable limits.

Build a Dual-Meter Transistor Tester Assembly - RF Cafe

Two-wafer ganged function switch is used in tester as shown in pictorial diagram above. Both wafers are identical. Note that pins two and eight are not used.

Power cord of tester is led through grommet in mating half of Minibox before soldering it in place. 

Current gain (Beta) test for n-p-n transistors is identical to p-n-p test shown - RF Cafe

Current gain (Beta) test for n-p-n transistors is identical to p-n-p test shown in simplified schematic but polarities of meters and power source are reversed by switching S2.

You can safely measure the exact leakage current on the more sensitive 0-1 ma. base current meter (M1). Turn off the tester and reconnect the transistor base and collector leads to the corresponding tester binding posts. Do not connect the emitter lead; keep the function switch in the "leakage" position. When you turn on the power, you'll find that most transistors will give little - if any - deflection of the 0-1 ma. base current meter. Some low-leakage silicon units will give no perceptible deflection at all.


1-2 3/4" x 2 1/8" x 15/8" Minibox (Bud CU 2100A)

1-Three-lead transistor socket

1-Power transistor socket (Motorola MK-10 or equivalent)

3-Banana plugs

If the transistor passes the leakage test, you can safely perform the current gain (Beta) test. Current gain cannot be read directly on the tester, but Beta is very easily found by dividing the collector current reading by the base current reading.

The Beta test is made by setting S1 to Beta N-P-N or Beta P-N-P. Make sure the power is off. Connect the transistor base, emitter, and collector leads to the corresponding binding posts. Check the manufacturer's specifications for the maximum collector current for the transistor under test and never exceed this value as read on the 0-100 ma. collector current meter. Now switch on the tester, but leave the Base Current pot full counterclockwise. Record the base current and collector current meter readings. Dividing the collector current by the base current will give you one value for the Beta (current gain) of the transistor under test.

Now increase the base bias current with the Base Current potentiometer. This will cause an increase in the collector current. Once more, record the meter readings and compute the current gain. Continue this process until you have several values for current gain.

Note that Beta is constant except at the higher collector currents; this is a normal transistor characteristic. Check your computed values for the current gain against the manufacturer's specs to see if the transistor is up to snuff.

You'll soon find that you'll have more confidence in the circuits you build and trouble-shoot. Using the tester, you'll be able to give transistors a rapid checkout and use them to best advantage.

Leakage test effectively puts two meters in series with transistor - RF Cafe

Leakage test effectively puts two meters in series with transistor as shown in simplified schematic.

Polarities for n-p-n transistors are reversed as in Beta test.



Posted May 31, 2022
(updated from original post on 12/7/2011)

everythingRF RF & Microwave Parts Database (h1)
Windfreak Technologies Frequency Synthesizers - RF Cafe

Innovative Power Products Passive RF Products - RF Cafe

LadyBug RF Power Sensors