Search RFCafe.com                           
      More Than 17,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Assns


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils Visio | RF Symbols Visio
RF Symbols Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits



Windfreak Technologies Frequency Synthesizers - RF Cafe

Exodus Advanced Communications Best in Class RF Amplifier SSPAs

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Innovative Power Products (IPP) Baluns & Transformers

Rules of Exponents

These rules for exponents give some insight into why logarithms are useful for performing multiplication, division, and exponent operations.

The exponent is usually shown as a superscript to the right of the base. The exponentiation an can be read as: a raised to the n-th power, a raised to the power [of] n or possibly a raised to the exponent [of] n, or more briefly: a to the n-th power or a to the power [of] n, or even more briefly: a to the n. Some exponents have their own pronunciation: for example, a2 is usually read as a squared and a3 as a cubed.

The power an can be defined also when n is a negative integer, at least for nonzero a. No natural extension to all real a and n exists, but when the base a is a positive real number, an can be defined for all real and even complex exponents n via the exponential function ez. Trigonometric functions can be expressed in terms of complex exponentiation. - Wikipedia

ax · ay = a (x+y)  - RF Cafe  - RF Cafe
( a · b )x = ax · bx
( ax )y = a x·y
 - RF Cafe  - RF Cafe  - RF Cafe
 - RF Cafe  - RF Cafe  - RF Cafe
Innovative Power Products (IPP) Baluns & Transformers
PCB Directory (Manufacturers)

Cafe Press

Anritsu Test Equipment - RF Cafe