RF Cafe Homepage
LadyBug RF Power Sensors

Temwell Filters

RF Cascade Workbook 2018 by RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Crane Aerospace Electronics Microwave Solutions

Arrhenius Lifetime Acceleration of an Integrated Circuit

The Arrhenius equation predicts failure acceleration rate due to temperature increase. Although originally developed to describe chemical reactions due to temperature, it applies equally well to electronic assembly failure rates. The Arrhenius activation energy, ΔH, is all that is needed to calculate temperature-related acceleration.

Swedish chemist Svante Arrhenius provided a physical justification and interpretation for his observation back in 1899. His equation can be used to model the temperature-variance of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally-induced processes/reactions. A useful generalization borne out by the Arrhenius equation is that for many common chemical reactions at room temperature, the reaction rate doubles for every 10 °C increase in temperature.

Arrhenius Model for Integrated Circuits
 
F = x1
x2
= eα {Lifetime Acceleration Factor}
Where: x1 = Failure rate at junction temperature T1

x2 = Failure rate at junction temperature T2

T = Junction temperature in degrees K

ΔH = Thermal activation energy in eV

k = Boltzmann's constant

Arrhenius Model for Integrated Circuits

Crane Aerospace Electronics Microwave Solutions
Cafe Press



withwave microwave devices - RF Cafe