Search RFCafe.com                           
      More Than 18,000 Unique Pages
Please support me by ADVERTISING!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™ Please Support My Advertisers!
   Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
     AI-Generated
     Technical Data
Pioneers | Society
Companies | Parts
Principles | Groups


 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
 Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post

Software: RF Cascade Workbook
RF Stencils for Visio | RF Symbols for Visio
RF Symbols for Office | Cafe Press
Espresso Engineering Workbook

Aegis Power  |  Alliance Test
Centric RF  |  Empower RF
ISOTEC  |  Reactel  |  RFCT
San Fran Circuits

Amplifier Solutions Corporation (ASC) - RF Cafe

Crane Aerospace Electronics Microwave Solutions: Space Qualified Passive Products

Copper Mountain Technologies (VNA) - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

TotalTemp Technologies (Thermal Platforms) - RF Cafe

Dry Process for Making PC Boards
October 1969 Electronics World

October 1969 Electronics World

October 1969 Electronics World Cover - RF Cafe  Table of Contents 

Wax nostalgic about and learn from the history of early electronics. See articles from Electronics World, published May 1959 - December 1971. All copyrights hereby acknowledged.

The October 1969 issue of Electronics World magazine contained no fewer than nine separate articles on the relatively new technology of printed circuit boards (PCBs). Through the mid 1960s, many, if not most, electronic assemblies used all point-to-point wiring connections, or a majority of point-to-point with a minor circuit or two on a PCB. Multilayer PCBs were being routinely manufactured for defense and aerospace applications, but more than two or three layers was a rarity in an AM/FM radio, television, or smart appliance (just kidding about the last one). This "dry process" for PCBs, costing $6k ($41k in 2017 dollars), was pitched as a low cost method for manufacturing small volume boards. Compare that to today where dozens of companies will turn five or six relatively complex prototype PCBs in a day or two for $100.

Dry Process for Making PC Boards

Dry Process for Making PC Boards, October 1969 Electronics World - RF CafePrototype PC boards, in sizes up to 8 1/2 X 11 inches, are manufactured in less than 8 minutes using dry-process equipment available from Xerox. Recommended for prototype quantities, up to 200 boards may be made from a single drawing. The basic system, including a camera, processor, and vapor fuser, may be purchased for some $6,000. A rental plan recommended by Xerox enables the user to rent the equipment for $45 per month plus 10 cents for each manufactured board. In addition, approximately $200 has to be invested in accessories and $50 in expendable items. After 90 days the system may be purchased for $1,250. No special room temperature or light conditions are required for the installation of equipment. It is claimed that the simplicity of the equipment permits untrained personnel to master the process in one hour.

A flow chart illustrating the sequence of steps in manufacturing a PC board is shown. Initially, the operator slides a selenium-coated plate into the processor where it is made light-sensitive with a positive charge of electricity. The plate is reusable, enjoying long life if handled carefully. Protected by a light shield, it is then placed in the camera. The shield is withdrawn and the plate exposed to the artwork. Your original layout may be used for obtaining the image of the printed-circuit pattern.

After exposure, the plate is returned to the processor and developed. Negatively charged black powder is cascaded over the plate, the powder adhering to the areas unexposed to light. The resulting image is transferred electrostatically to an intermediate tissue which has been positioned on the plate and inserted into the processor. The copper-clad laminate is then placed on a special transfer plate in the processor where the image on the intermediate tissue is transferred electrostatically to the copper surface. Following the transfer, the tissue is peeled away.

In the final step before conventional etching, the black-powder image is fused to the copper surface of the laminate. This is accomplished in the vapor fuser which is an air-tight compartment containing a rack for inserting the laminate. Vapor emanating from a solution (Flo-Set) supplied by Xerox forms a permanent toned image of the layout on the copper.

The preceding steps, from beginning to end, should take under 8 minutes for an experienced operator. It is possible to repeat the process and form another layout on the other side of the board, producing a two-sided PC board. Transferring the image on the first side does not, in any manner, affect the second side. A possible difficulty is registration. With proper care, satisfactory two-sided boards are realizable.

The system is flexible. For example, the circuit and component sides of a board may be shown in one simplified view on an assembly drawing. The artwork is photographed with a white-dot pattern Craftint screen overlay (25 to an inch). The result is a full-sized screened copy of the artwork copied on the reverse side of a drawing form. Viewed from the front, the layout appears to be reverse reading. The draftsman can visually locate the placement of components from the terminal pads located on the reverse side of the drawing. Prints made from the drawing show details of each mounted component superimposed on the screened "ghost" circuit image.

 

 

Posted August 5, 2024
(updated from original post on 10/3/2017)

TotalTemp Technologies (Thermal Platforms) - RF Cafe
Anritsu Test Equipment - RF Cafe

LadyBug RF Power Sensors

ConductRF Phased Matched RF Cables - RF Cafe