Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives Magazine Sponsor RF Cafe Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Alliance Test Equipment Centric RF Empower RF ISOTEC Reactel RF Connector Technology San Francisco Circuits Anritsu Amplifier Solutions Anatech Electronics Axiom Test Equipment Conduct RF Copper Mountain Technologies Exodus Advanced Communications Innovative Power Products KR Filters LadyBug Technologies Rigol TotalTemp Technologies Werbel Microwave Windfreak Technologies Wireless Telecom Group Withwave RF Cafe Software Resources Vintage Magazines RF Cafe Software WhoIs entry for RF Cafe.com Thank you for visiting RF Cafe!
Windfreak Technologies Frequency Synthesizers - RF Cafe

Cafe Press

Copper Mountain Technologies (VNA) - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Crane Aerospace Electronics Microwave Solutions: Space Qualified Passive Products

Transient (Damped) Responses

In electrical and mechanical Engineering, a transient response or natural response is the reaction of a system to a change from equilibrium (steady state). Over an infinitely long time of being unperturbed, the system again returns to a steady state a either its original state or some new state.

In an electrical system, a simple example of transient response would be the output of a DC power supply when it is turned on. The output voltage is initially 0 V, and sometime after being switched on, settles into some new voltage level. During the transition from 0 V to some new DC voltage level, the output voltage follows some variation of the three waveforms illustrated below. An underdamped supply would allow the output voltage to swing higher than the final voltage (a potentially destructive scenario). Overdamping would cause the output voltage to take an excessively long time to reach the final value. A critically damped system allows the voltage to ramp up as quickly as theoretically possible without ever overshooting the final steady state voltage level. Choosing appropriate values of resistance, inductance, and capacitance allows the response to be tailored to the specific need.

In a mechanical system, a simple example is a mass/spring/damper system. The transient response is the position of the mass as the system returns to equilibrium after an initial force or a non zero initial condition. Think of jumping on the bumper of a car and observing who the car moves when you get off. An over damped system results in it being difficult to even get the car rocking. Under damped results in the car bouncing up and down many cycles after you get off. Critically damped results in a smooth return to the neutral position.

Underdamped, critically damped, overdamped transient response chart graph - RF Cafe

f(t) = A1*es1t + A2*es2t Over Damped - Roots of the characteristic equation are real and unique.
f(t) B1e-at cos (ω t) + B2e-at sin (ω t) Under Damped - Roots of the characteristic equation are complex.
f(t) = D1te-at + D2e-at Critically Damped - Roots of the characteristic equation are equal and real.
Crane Aerospace Electronics Microwave Solutions: Space Qualified Passive Products
Rigol DHO1000 Oscilloscope - RF Cafe

Axiom Test Equipment - RF Cafe

Innovative Power Products Passive RF Products - RF Cafe