RF Cascade Workbook for Excel
RF & Electronics Symbols for Visio
RF & Electronics Symbols for Office
RF & Electronics Stencils for Visio
RF Workbench
T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads
Espresso Engineering Workbook™
Smith Chart™ for Excel
|
|
DARPA: Hypersonics Is the New Stealth |
This story was retrieved from the DARPA website. Neither DARPA nor any other entity
represented in the article endorses this website.
HYPERSONICS—THE NEW STEALTH
July 06, 2012
-- DARPA investments in extreme hypersonics continue.
DARPA’s research and
development in stealth technology during the 1970s and 1980s led to the world’s most advanced radar-evading
aircraft, providing strategic national security advantage to the United States. Today, that strategic advantage is
threatened as other nations’ abilities in stealth and counter-stealth improve. Restoring that battle space
advantage requires advanced speed, reach and range. Hypersonic technologies have the potential to provide the
dominance once afforded by stealth to support a range of varied future national security missions.
Extreme
hypersonic flight at Mach 20 (i.e., 20 times the speed of sound)—which would enable DoD to get anywhere in the
world in under an hour—is an area of research where significant scientific advancements have eluded researchers
for decades. Thanks to programs by DARPA, the Army, and the Air Force in recent years, however, more information
has been obtained about this challenging subject.
“DoD’s hypersonic technology efforts have made
significant advancements in our technical understanding of several critical areas including aerodynamics;
aerothermal effects; and guidance, navigation and control,” said Acting DARPA Director, Kaigham J. Gabriel. “but
additional unknowns exist.”
Tackling remaining unknowns for DoD hypersonics efforts is the focus of the
new DARPA Integrated Hypersonics (IH) program. “History is rife with examples of different designs for ‘flying
vehicles’ and approaches to the traditional commercial flight we all take for granted today,” explained Gabriel.
“For an entirely new type of flight—extreme hypersonic—diverse solutions, approaches and perspectives informed by
the knowledge gained from DoD’s previous efforts are critical to achieving our goals.”
To encourage this
diversity, DARPA will host a Proposers’ Day on August 14, 2012, to detail the technical areas for which proposals
are sought through an upcoming competitive broad agency announcement.
“We do not yet have a complete
hypersonic system solution,” said Gregory Hulcher, director of Strategic Warfare, Office of the Under Secretary of
Defense for Acquisition, Technology and Logistics. “Programs like Integrated Hypersonics will leverage previous
investments in this field and continue to reduce risk, inform development, and advance capabilities.”
The IH program expands hypersonic technology research to include five primary technical areas: thermal
protection system and hot structures; aerodynamics; guidance, navigation, and control (GNC);
range/instrumentation; and propulsion.
At Mach 20, vehicles flying inside the atmosphere experience intense heat, exceeding 3,500 degrees Fahrenheit,
which is hotter than a blast furnace capable of melting steel, as well as extreme pressure on the aeroshell. The
thermal protection materials and hot structures technology area aims to advance understanding of high-temperature
material characteristics to withstand both high thermal and structural loads. Another goal is to optimize
structural designs and manufacturing processes to enable faster production of high-mach aeroshells. The
aerodynamics technology area focuses on future vehicle designs for different missions and addresses the effects of
adding vertical and horizontal stabilizers or other control surfaces for enhanced aero-control of the vehicle.
Aerodynamics seeks technology solutions to ensure the vehicle effectively manages energy to be able to glide to
its destination. Desired technical advances in the GNC technology area include advances in software to enable the
vehicle to make real-time, in-flight adjustments to changing parameters, such as high-altitude wind gusts, to stay
on an optimal flight trajectory.
The range/instrumentation area seeks advanced technologies to embed data
measurement sensors into the structure that can withstand the thermal and structural loads to provide real-time
thermal and structural parameters, such as temperature, heat transfer, and how the aeroshell skin recedes due to
heat. Embedding instrumentation that can provide real-time air data measurements on the vehicle during flight is
also desired. Unlike subsonic aircraft that have external probes measuring air density, temperature and pressure
of surrounding air, vehicles traveling Mach 20 can’t take external probe measurements. Vehicle concepts that make
use of new collection and measurement assets are also being sought.
The propulsion technology area is
developing a single, integrated launch vehicle designed to precisely insert a hypersonic glide vehicle into its
desired trajectory, rather than adapting a booster designed for space missions. The propulsion area also addresses
integrated rocket propulsion technology onboard vehicles to enable a vehicle to give itself an in-flight rocket
boost to extend its glide range.
“By broadening the scope of research and engaging a larger community in
our efforts, we have the opportunity to usher in a new area of flight more rapidly and, in doing so, develop a new
national security capability far beyond previous initiatives,” explained Air Force
Maj. Christopher Schulz,
DARPA program manager, who holds a doctorate in aerospace engineering.
The IH program is designed to
address technical challenges and improve understanding of long-range hypersonic flight through an initial
full-scale baseline test of an existing hypersonic test vehicle, followed by a series of subscale flight tests,
innovative ground-based testing, expanded modeling and simulation, and advanced analytic methods, culminating in a
test flight of a full-scale hypersonic X-plane (HX) in 2016. HX is envisioned as a recoverable next-generation
configuration augmented with a rocket-based propulsion capability that will enable and reduce risk for highly
maneuverable, long-range hypersonic platforms.
More information regarding the August 14 Proposers’ Day is available
here.
Posted 7/9/2012
|
|
|
|