Search RFCafe.com                          
      More Than 17,000 Unique Pages
Please support my efforts by advertising!
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Please Support My Advertisers!
 
  Formulas & Data
Electronics | RF
Mathematics
Mechanics | Physics
 About | Sitemap
Homepage Archive
        Resources
Articles, Forums Calculators, Radar
Magazines, Museum
Radio Service Data
Software, Videos
     Entertainment
Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes
   Parts & Services
1000s of Listings
Software: RF Cascade Workbook | Espresso Engineering Workbook
RF Stencils for Visio | RF Symbols for Visio
RF Symbols for Office | Cafe Press
Aegis Power | Alliance Test | Centric RF | Empower RF | ISOTEC | Reactel | RFCT | San Fran Circuits
Temwell Filters

Axiom Test Equipment - RF Cafe

Anatech Electronics RF Microwave Filters - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low-priced products, all of which I created.

RF Cascade Workbook for Excel

RF & Electronics Symbols for Visio

RF & Electronics Symbols for Office

RF & Electronics Stencils for Visio

RF Workbench

T-Shirts, Mugs, Cups, Ball Caps, Mouse Pads

These Are Available for Free

Espresso Engineering Workbook™

Smith Chart™ for Excel

Amplifier Solutions Corporation (ASC) - RF Cafe

RF Cascade Workbook© 2005 User's Guide - Chapter 8

Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Version 1.11

by Kirt Blattenberger

RF Cafe Website

(www.rfcafe.com)

Chapter 8

8    Mixers + LOs

Ideal mixers use two input signals to generate sum and difference frequencies at the output. One signal is the input frequency to be converted (commonly referred to as the RF) and the other is a local oscillator (referred to as the LO) that is higher or lower infrequency than the input signal by an amount equal to the difference between the input frequency and the desired output frequency. See Figure 14. RF Cascade Workbook 2005 uses only the sideband (upper or lower) that you specify when calculating results. It does not account for the unintended sideband (see section 5.2 for discussion on image noise).

 

 

RF  Cascade Workbook 2005 - RF Cafe

RF  Cascade Workbook 2005 - RF Cafe

Figure 14    Mixer/LO Configuration & Equation

A unique pictorial presentation of what happens during frequency translation is provided in Figure 15. All four combinations of the mixing equation shown in Figure 14 are covered. Figures A and B are equivalent results for both the LO-RF and the RF-LO cases. In case A, the subtraction results in negative frequencies, but the negative terms are said to be “reflected” or “folded” about the 0 Hz (DC) axis. The subtraction in case B does not produce any negative results, so there is no need to mathematically reflect is about 0 Hz. There is no real physical reflection mechanism occurring, it is merely a mathematical convenience. The mixer has no way of determining which frequency is being subtracted from the other, regardless of you happen to write the equation.

No spectral inversion occurs in either the upper sideband (USB) or the lower sideband (LSB) with a low-side LO injection (cases A and B). However, with a high-side LO injection, the LSB will exhibit spectral inversion while the USB does not (cases C, D and E). An explanation of spectral inversion is provided in the next paragraph. First, though, note that with a high-side LO there is an equivalent subtraction/reflection pair similar to the low-side LO case. Case E is a special case where the LO functions as both a low-side and a high-side signal. There, a portion of the band experiences spectral inversion while the other portion does not.

RF  Cascade Workbook 2005 - RF Cafe

RF  Cascade Workbook 2005 - RF Cafe

RF  Cascade Workbook 2005 - RF Cafe

RF  Cascade Workbook 2005 - RF Cafe

RF  Cascade Workbook 2005 - RF Cafe

Figure 15    Frequency Inversion

    Spectral Inversion

Spectral inversion occurs when the lower sideband of a high-side injected LO is used for the output, like the examples in Figure 15 C, D and E. The result is the lower frequencies of the input band being translated into the upper frequencies of the output band, and vice versa. Shading and arrow-tipped lines are used to track the relative band edges. A second inversion will cancel out the original, but a third will reintroduce the inversion, and so on. Digital systems can un-invert the spectral inversion in software or firmware if it knows to expect it. However, spectral inversion of analog voice information results in unintelligible garble.

Translated frequencies are calculated and stored for every component at every input frequency (76 frequency as the default value). Refer to Figure 12 to see how the frequency range shifts at the output of the mixer (Mix 1) stage. If more than one mixer is used, then the frequency range s will shift accordingly each time based on the LO frequency and chosen sideband.

Chapter 1, 2, 3, 4, 5, 6, 7, 8,

        9, 10, 11, 12, 13

Version 1.11

by Kirt Blattenberger

RF Cafe Website

(www.rfcafe.com)

Chapter 8

Amplifier Solutions Corporation (ASC) - RF Cafe
Exodus Advanced Communications Best in Class RF Amplifier SSPAs

Innovative Power Products (IPP) Directional Couplers

RF Electronics Shapes, Stencils for Office, Visio by RF Cafe