•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Job Board

About RF Cafe™

Sitemap

Pi (π) - a Closer Look

There are so many pages on the Internet with information on π (pi) that I will not even attempt to outdo them. However, if you happened upon this website and are looking for series expansions for calculating π, then you have come to the right place. Here are a few of the most popular.

The earliest renditions of π resulted from estimating the relationship of measurements of the circumference of a circle to its diameter. Here are a few early values, which were all ratios of whole numbers because at the time it was inconceivable that something "irrational" could exist:

  • 3 = value implied in the Bible in I Kings 7:23
  • = upper bound by Archimedes
  • = lower bound by Adriaan
  • = Otho’s value
  • = Ptolemy’s value (he used 3.14167 in his calculations).
  • A few others:

Here’s an interesting property I just noticed myself about Ptolemy's value (even though it is of no consequence): the numerator is the impedance of free space, and the denominator times π yields the numerator, so, rearranged, 120π=377!


π was calculated to 200 places in 1844 by Johann Martin Zacharias Dase (1824-1861).


π was calculated to 200 places in 1844 by Johann Martin Zacharias Dase - RF Cafe and since , then pi approximatino - RF Cafe,
which is the first infinite series ever found for π, by James Gregory (1638-1675). The problem is that this series (called the Gregory-Leibniz series) converges very slowly on π: 300 terms are needed to be accurate to only two decimal places!


Newton (1656-1742) had a better idea (many, actually) and discovered the following:

Newton (1656-1742) had a better idea - RF Cafe, and since , then Newton (1656-1742) had a better idea - RF Cafe, which converges much more quickly.


He then determined that π to 16 decimal places using only 22 terms - RF Cafe, which produces π to 16 decimal places using only 22 terms.


Another series by Gregory was produced using two arctangents which resulted in:

                           Another series by Gregory was produced using two arctangents - RF Cafe


Euler (1707-1783) determined that , exactly. Of course, the arctangents are irrational. Euler calculated π to 20 decimal places in one hour using this formula.


This series by David and Gregory Chudnovsky of Columbia University produced over 4 billion digits in 1994, and each term gives an additional 14 digits:

David and Gregory Chudnovsky of Columbia University - RF Cafe


The incredibly simple series here was recently discovered: pi series - RF Cafe

...and was used as the basis for a handy algorithm that produces any digit of π one might desire, albeit in hexadecimal - see Reference 2, below, for the formula (too much involved to repeat it here).


 (thanks to Hugo K. for these last three items and for Reference 2, below)

1. For a very extensive treatise on π, please read the source of this material, "A History of Pi" by Petr Beckmann
2. "The Quest for Pi" by David H. Bailey, Jonathan M. Borwein, Peter B. Borwein and Simon Plouffe

June 25, 1996 Ref: Mathematical Intelligencer, vol. 19, no. 1 (Jan. 1997), pg. 50–57
Custom Search
More than 10,000 searchable pages indexed.

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger... single-handedly redefining what an engineering website should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5th MOB: My USAF radar shop

Airplanes and Rockets: My personal hobby website

Equine Kingdom: My daughter Sally's horse riding website