Search RFC: |                                     
Please support my efforts by ADVERTISING!
About | Sitemap | Homepage Archive
Serving a Pleasant Blend of Yesterday, Today, and Tomorrow™
Vintage Magazines
Electronics World
Popular Electronics
Radio & TV News
QST | Pop Science
Popular Mechanics
Radio-Craft
Radio-Electronics
Short Wave Craft
Electronics | OFA
Saturday Eve Post
Alliance Test | Isotec
Please Support My Advertisers!
RF Cafe Sponsors
Aegis Power | Centric RF | RFCT
Empwr RF | Reactel | SF Circuits

Formulas & Data

Electronics | RF
Mathematics
Mechanics | Physics


Calvin & Phineas

kmblatt83@aol.com

Resources

Articles, Forums, Radar
Magazines, Museum
Radio Service Data
Software, Videos


Artificial Intelligence

Entertainment

Crosswords, Humor Cogitations, Podcast
Quotes, Quizzes

Parts & Services

1000s of Listings

        Software:

Please Donate
RF Cascade Workbook | RF Symbols for Office
RF Symbols for Visio | RF Stencils for Visio
Espresso Engineering Workbook
Anatech Electronics RF & Microwave Filters - RF Cafe

Pi (π) - a Closer Look

There are so many pages on the Internet with information on π (pi) that I will not even attempt to outdo them. However, if you happened upon this website and are looking for series expansions for calculating π, then you have come to the right place. Here are a few of the most popular.

The earliest renditions of π resulted from estimating the relationship of measurements of the circumference of a circle to its diameter. Here are a few early values, which were all ratios of whole numbers because at the time it was inconceivable that something "irrational" could exist:

  • 3 = value implied in the Bible in I Kings 7:23
  •  - RF Cafe = upper bound by Archimedes

  •  - RF Cafe = lower bound by Adriaan

  •  - RF Cafe = Otho's value

  •  - RF Cafe = Ptolemy's value (he used 3.14167 in his calculations).

  • A few others:  - RF Cafe

Here's an interesting property I just noticed myself about Ptolemy's value (even though it is of no consequence): the numerator is the impedance of free space, and the denominator times π yields the numerator, so, rearranged, 120π=377!


π was calculated to 200 places in 1844 by Johann Martin Zacharias Dase (1824-1861).

π was calculated to 200 places in 1844 by Johann Martin Zacharias Dase - RF Cafe and since  - RF Cafe, then pi approximatino - RF Cafe,

which is the first infinite series ever found for π, by James Gregory (1638-1675). The problem is that this series (called the Gregory-Leibniz series) converges very slowly on π: 300 terms are needed to be accurate to only two decimal places!

Newton (1656-1742) had a better idea (many, actually) and discovered the following:

Newton (1656-1742) had a better idea - RF Cafe, and since  - RF Cafe, then Newton (1656-1742) had a better idea - RF Cafe, which converges much more quickly.

He then determined that π to 16 decimal places using only 22 terms - RF Cafe, which produces π to 16 decimal places using only 22 terms.

Another series by Gregory was produced using two arctangents which resulted in:

                           Another series by Gregory was produced using two arctangents - RF Cafe

Euler (1707-1783) determined that  - RF Cafe, exactly. Of course, the arctangents are irrational. Euler calculated π to 20 decimal places in one hour using this formula.

This series by David and Gregory Chudnovsky of Columbia University produced over 4 billion digits in 1994, and each term gives an additional 14 digits:

David and Gregory Chudnovsky of Columbia University - RF Cafe

The incredibly simple series here was recently discovered: pi series - RF Cafe

...and was used as the basis for a handy algorithm that produces any digit of π one might desire, albeit in hexadecimal - see Reference 2, below, for the formula (too much involved to repeat it here).

 (thanks to Hugo K. for these last three items and for Reference 2, below)


1. For a very extensive treatise on π, please read the source of this material, "A History of Pi" by Petr Beckmann

2. "The Quest for Pi" by David H. Bailey, Jonathan M. Borwein, Peter B. Borwein and Simon Plouffe
June 25, 1996 Ref: Mathematical Intelligencer, vol. 19, no. 1 (Jan. 1997), pg. 50–57

Anatech Electronics RF & Microwave Filters - RF Cafe