Homepage - RF Cafe
Webmaster: Kirt Blattenberger | KB3UON | Sitemap | ©1996-2014
Menu below is just a small sample of what is here!
 
Custom Search
More than 10,000 searchable pages indexed.
•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Laws of Logarithms

According to the 1797 Britannica a logarithm is:

"...a series of numbers in arithmetical progression, corresponding to others in geometrical progression; by means of which, arithmetical calculations can be made with much more ease and expedition than otherwise."

This fundamental property of logarithms makes them utterly indispensible in engineering and science, where often it is necessary to "mentally" multiply an divide quantities like gain, noise figure, etc. Thanks to logarithms, those multiplication and division operations are transformed into much simpler tasks of addition and subtract, respectively.

To make the process even simpler, many of our engineering and science quantities are routinely expressed in units of decibels. We work with decibels (dB) of gain, decibels wrt a milliwatt of power (dBm), and many other such quantities. Decibels are commonly used in optics, acoustics, and other realms of physics.

Basic Rules
If x = ay, then y = loga x
loga (x * y) = loga x + loga y
loga (x / y) = loga x - loga y
loga (xn) = n * loga x
Change of Base
log sub10 (x) - RF Cafe
so,
log sub a (x) - RF Cafe
In General:
  • log10 x is written as log x
  • loge x is written as ln x     

where "e" is the base of the natural logarithm

An example would be where you have three stages of gain in series (cascade) that need to be totaled. Supposed that the first stage quadrupled the power of the input signal (gain = 4), the second stage increased the power by a factor of 20 (gain = 20), the third stage increased the power by a factor of 2 (gain = 2). In order to calculate the total power gain, you multiply the gains for a total of 4 x 20 x 2  = 160.

Now, that is not such a hard mental exercise, but suppose instead the stage gains were as follows:
g1 = 7.51
g2 = 22.80
g3 = 3.94

Quick, what is the total gain? If you are a math whiz, you would immediately answer, "674.63832." If you were a disciplined scientist, however, you would reply, "675," because you would dutifully you know that the answer cannot be of any greater precision than the lowest precision of any involved quantity. But, I digress.

Now, let us go about the same exercise using decidels.
G1 = 10 log10 (7.51) = 8.76 dB
G2 = 10 log10 (22.80) = 13.58 dB
G3 = 10 log10 (3.94) = 5.95 dB

Total gain is the sum of the three gains = 28.29 dB (ok, 28.3 dB)

To check the results: 10 log10 (674.63832) = 28.3 dB   Q.E.D., as they say.
A Disruptive Web Presence

Custom Search
Over 10,000 pages indexed! (none duped or pirated)

Read About RF Cafe
Webmaster: Kirt Blattenberger
    KB3UON

RF Cafe Software

RF Cascade Workbook
RF Cascade Workbook is a very extensive system cascaded component Excel workbook that includes the standard Gain, NF, IP2, IP3, Psat calculations, input & output VSWR, noise BW, min/max tolerance, DC power cauculations, graphing of all RF parameters, and has a graphical block diagram tool. An extensive User's Guide is also included. - Only $35.
RF system analysis including
frequency conversion & filters

RF & EE Symbols Word
RF Stencils for Visio

Product & Service Directory
Personally Selected Manufacturers
RF Cafe T-Shirts & Mugs

RF Cafe Software

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
Your RF Cafe Progenitor & Webmaster
Click here to read about RF CafeKirt Blattenberger... single-handedly redefining what an
                                 engineering website should be.

View the YouTube RF Cafe Intro Video Carpe Diem! (Seize the Day!)

5CCG (5th MOB): My USAF radar shop

Airplanes and Rockets: My personal hobby website

Equine Kingdom: My daughter Sally's horse riding website