Formulas & Data:
- Electronics
- Mathematics
- Physics
- RF & Microwaves

Parts Vendors:
- all hand-selected

- Amateur Radio
- Vintage Articles:
- Electronics World
- Popular Electronics
- QST
- Radio & TV News
- Radio Craft
- Short Wave Craft
- Wireless World

- Events Calendar
RF Cafe Homepage
Copyright 1999-2015   •−•  ••−•    −•−•  •−  ••−•  •   "RF Cafe" in Morse Code  >> Listen to It <<
- EW & Radar Handbook
- Quizzes       - Software
- App Notes
- Calculators
- Advertise on RF Cafe
- About RF Cafe™
- RF Cafe Shirts & Mugs
- RF Cafe Archives
RF Cafe Book Contest
- RF Cafe on Visit RF Cafe on Facebook Visit RF Cafe on Twitter Visit RF Cafe on LinkedIn
- Tech Humor
- Forums Archive
- Job Board
- Donate to RF Cafe
- Kirt's Cogitations
Custom Search
More than 10,000 searchable pages indexed.
Greetings: There is so much good stuff on RF Cafe that there is no way to list or link to all of it here. Please use the Search box or the Site Map to find what you want - there is a good chance I have it here. Thanks!

Laws of Thermodynamics

Thermodynamics is the field of physics that describes and correlates the physical properties of macroscopic systems of matter and energy by relating such qualities temperature, pressure, and volume. It also takes in energy, heat, and work. When a physical system moves from one state of equilibrium to another, a thermodynamic process is said to take place. The laws of thermodynamics were discovered in the 19th century through painstaking experimentation.

From Wikipedia:
"The first established principle of thermodynamics (which eventually became the Second Law) was formulated by Sadi Carnot in 1824. By 1860, as found in the works of those as Rudolf Clausius and William Thomson, there were two established "principles" of thermodynamics, the first principle and the second principle. As the years passed, these principles turned into "laws." By 1873, for example, thermodynamicist Willard Gibbs, in his “Graphical Methods in the Thermodynamics of Fluids”, clearly stated that there were two absolute laws of thermodynamics, a first law and a second law."

Zeroth LawFirst LawSecond LawThird Law
When each of two systems is in equilibrium with a third, the first two systems must be in equilibrium with each other. This shared property of equilibrium is the temperature. The concept of temperature is based on this Zeroth Law. Because energy cannot be created or destroyed (with the special exception of nuclear reactions) the amount of heat transferred into a system plus the amount of work done on the system must result in a corresponding increase of internal energy in the system. Heat and work are mechanisms by which systems exchange energy with one another. This First Law of thermodynamics identifies caloric, or heat, as a form of energy. Entropy—that is, the disorder—of an isolated system can never decrease. Therefore, when an isolated system achieves a configuration of maximum entropy, it can no longer undergo change (it has reached equilibrium). Additionally, it is not enough to conserve energy and thus obey the First Law. A machine that would deliver work while violating the second law is called a "perpetual-motion machine of the second kind." In such a system, energy could then be continually drawn from a cold environment to do work in a hot environment at no cost. The Third Law of thermodynamics states that absolute zero cannot be attained by any procedure in a finite number of steps. Absolute zero can be approached arbitrarily closely, but it can never be reached.

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger… single-handedly redefining what an engineering website should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5th MOB: My USAF radar shop

Airplanes and Rockets: My personal hobby website

Equine Kingdom: My daughter Sally's horse riding website