RF Cafe Software

RF Cascade Workbook 2005 - RF Cafe
RF Cascade Workbook

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel
RF & EE Symbols Word
RF Stencils for Visio

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2016
Webmaster:
Kirt Blattenberger,
 BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:
 AirplanesAndRockets.com

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !

Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

Rules of Exponents

These rules for exponents give some insight into why logarithms are useful for performing multiplication, division, and exponent operations.

The exponent is usually shown as a superscript to the right of the base. The exponentiation an can be read as: a raised to the n-th power, a raised to the power [of] n or possibly a raised to the exponent [of] n, or more briefly: a to the n-th power or a to the power [of] n, or even more briefly: a to the n. Some exponents have their own pronunciation: for example, a2 is usually read as a squared and a3 as a cubed.

The power an can be defined also when n is a negative integer, at least for nonzero a. No natural extension to all real a and n exists, but when the base a is a positive real number, an can be defined for all real and even complex exponents n via the exponential function ez. Trigonometric functions can be expressed in terms of complex exponentiation. - Wikipedia


ax · ay = a (x+y)
( a · b )x = ax · bx
( ax )y = a x·y