Matrix Algebra 
In mathematics, a matrix
(plural matrices, or less commonly matrixes) is a rectangular array of numbers, as shown at the right. One use of
matrices is to keep track of the coefficients in a system of linear equations. Matrices can also represent linear
transformations, which are higherdimensional analogs of linear functions of the form f(x) = cx, where c is a
constant. They can be added and subtracted entrywise, and multiplied according to a rule corresponding to
composition of linear transformations. These operations satisfy the usual identities, except that matrix
multiplication is not commutative: the identity AB=BA can fail. For a square matrix, the determinant and inverse
matrix (when it exists) govern the behavior of solutions to the corresponding system of linear equations, and
eigenvalues and eigenvectors provide insight into the geometry of the associated linear transformation.
 Wikipedia







Copyright: 1996  2024 Webmaster:
Kirt Blattenberger, BSEE  KB3UON 
RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling
2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas
and reference material while performing my work as an RF system and circuit design engineer.
The Internet was still largely an unknown entity at the time and not much was available
in the form of WYSIWYG
...
All trademarks, copyrights, patents, and other rights of ownership to images and text
used on the RF Cafe website are hereby acknowledged.
My Hobby Website: AirplanesAndRockets.com

