NEETS Module 17 - Radio-Frequency Communications Principles
Pages i - ix,
1-1 to 1-10,
1-11 to 1-20,
2-1 to 2-10,
2-11 to 2-20,
2-21 to 2-30,
2-31 to 2-37,
3-1 to 3-10,
3-11 to 3-20,
3-21 to 3-30,
3-31 to 3-40,
3-41 to 3-47,
4-1- to 4-10,
4-11 to 4-21,
5-1 to 5-10,
5-11 to 5-20, Index
CHAPTER 5
INTRODUCTION TO MISCELLANEOUS COMMUNICATIONS SYSTEMS AND EQUIPMENT
LEARNING OBJECTIVES
Upon completion of this chapter you will be able to: 1. Describe the basic operation
of communications systems that operate at medium frequencies and below. 2. Describe the
basic microwave line-of-sight communications system. 3. Describe the basic tropospheric
scatter communications system. 4. Describe the objective/purpose of the naval tactical
data system (NTDS). 5. Describe the naval tactical data system (NTDS) data transmission
subsystems in terms of links. 6. Explain the various applications of portable
communications equipment. 7. Define the term laser. 8.
Describe the basic theory of operation of lasers 9. Describe the possible applications
of lasers in communications.
INTRODUCTION
In the previous four chapters we've looked at communications equipment and systems that were used in several
frequency ranges. Some have had many applications. In this chapter you will look at systems used in some portions
of the RF spectrum that have not been covered in detail. We will also discuss the naval tactical data system
(NTDS), which operates in the high-frequency and ultrahigh-frequency regions. Various portable communications
equipment used in the military and an introduction to the laser and its uses in communications are included. Some
of the applications presented are fairly new to the military community.
SYSTEMS
As discussed in chapter 1, the frequency range from elf to SHF is from below 300 hertz up to 30 gigahertz. The
first area we will cover is the lower frequency bands (medium frequency [mf] and below). You will then get a look
at the microwave region and the high-frequency and ultrahigh-frequency range as it pertains to the naval tactical
data system (NTDS).
5-1
MEDIUM FREQUENCY AND BELOW Most of the receivers and transmitters that you
will see used in the mf portions of the RF spectrum and below are very similar in design. In chapter 1 we
discussed the operational uses of the equipment; now let's look at the equipment itself. Equipment items
covered in this and other chapters are meant to be merely representative of equipment that may be encountered in
naval communications. No attempt will be made to include all of the possible equipment or equipment
configurations.
Transmit Equipment You should realize the transmitters used in bands of medium frequency
and below are similar to those you studied in chapter 2. In other words, a transmitter used in one frequency range
is basically the same as one used in another range. However, there are some differences. Two of the differences
are component size and the use of a technique called DOUBLING UP. The components used in bands of medium
frequency and below are much larger physically than the ones previously discussed. This is because of the higher
operating voltage and current levels required to produce the very high-powered RF outputs needed for the uses
covered in chapter 1. A given resistor used in an hf application may be rated at 1/2 watt, whereas the same
resistor used in a lower frequency application would probably be rated in tens or even hundreds of watts.
A block diagram of a doubled-up transmitter is shown in figure 5-1. Remember, bands of medium frequencies and
below are used almost exclusively for broadcast and are on the air continuously. Doubling up increases
reliability. As you can see, two transmitters are located in the same equipment cabinet. This allows you to
quickly transfer circuits if one should fail. This dual installation also allows both amplifiers to be used
together to double the output power. When you use this application, you sacrifice the doubling-up capability of
only the power amplifier. All the other components are still available as backups. Let's go through figure 5-1 and
describe the block functions.
5-2

Figure 5-1. - Doubled-up transmitter block diagram.
The frequency generator part of the frequency generator and FSK block is an oscillator. It provides the carrier
frequencies for the CW mode. The FSK part is a FREQUENCY SYNTHESIZER (a frequency source of high accuracy). It
makes both the mark and space frequencies from a very stable clock oscillator. The keying pulses determine which
FSK frequency the keyer chooses to transmit. This signal is then sent to the transmitter control console where it
is distributed to the first RF amplifier. This amplifier is referred to as the preliminary intermediate-power
amplifier (pre-IPA). The pre-IPA uses linear, untuned, push-pull, RF amplifiers to provide amplified RF to drive
other RF amplifiers. The pre-IPA output goes to the intermediate power amplifier (IPA).
The IPA receives the pre-IPA output, amplifies the signal, and drives other selected power amplifiers. The IPA
is a single-stage, untuned, linear, push-pull, RF circuit that uses water and forced-air cooled tubes.
Signals are then sent through the amplifier control, where they are used for signal monitoring purposes before
being applied to the final RF amplifier (pa). The pa amplifies the signal to the final desired power level. The pa
also contains variometers (variable inductors) for coupling. This coupled output is fed to the RF tuning unit.
The RF tuning unit consists of variable oil-filled capacitors and a fixed inductor for frequency tuning. The
signal is then sent to a knife switch. This switch simply routes the signal to the DUMMY LOAD or the antenna by
way of the HELIX HOUSE. (A dummy load is a nonradiating device the absorbs the rf
5-3
and has the impedance characteristics of the antenna.) The dummy load is impedance matched to the pa.
It allows testing of the pa without putting a signal on the air. When the equipment is in an operating mode, the
dummy load is not used. The helix house is a small building physically separated from the transmitter location. It
contains antenna loading, coupling, and tuning circuits. The main components consist of a HELIX (large coil) and
variable inductors. The signal is fed from the helix directly to the antenna. Sometimes two antennas are used.
Antenna designs vary with the amount and type of land available, desired signal coverage, and bandwidth
requirements. Figure 5-2 shows a simplified transmit antenna. The Navy uses TOP-HAT (flat- top) capacitive loading
with one or more radiating elements. Typical top hat antennas consist of two or more lengths of wire parallel to
each other and to the ground, each fed at or near its mid point. The lengths of wire are usually supported by
vertical towers. These antennas may take many shapes. The matching network shown is in the helix house. Figure 5-3
shows the installation at the naval communications unit in Cutler, Maine. The Navy has several of these types of
installations. They are used primarily for fleet broadcasts and have power outputs in the .25- to 2-megahertz
range. You should notice the transmitter, the location of the helix houses, and the dual antennas. You should also
notice the transmission line tunnel. It is underground and over a half-mile long. Figure 5-4, view (A) and view
(B), shows another antenna configuration. This array of monopoles (quarter-wave, vertically polarized stubs) is
referred to as a TRIATIC antenna. A triatic antenna is a special form of a rhombic-arranged monopole array. This
type of array is designed to transmit from a particular location. Triatics are all basically the same but have
some design differences at each site. The physical differences compensate for differences in terrain. Now that we
have looked at the transmit side, let's look at the receive side.

Figure 5-2. - Simplified VLF transmitting antenna.
5-4

Figure 5-3. - Cutler, Maine antenna installation.

Figure 5-4A. - Triatic type antenna.

Figure 5-4B. - Triatic type antenna.
5-5
Receive Equipment The receiver you will study here is fundamentally the same
as those we covered in chapter 2. A receiver used in this frequency range is about the same electrically as one
used in any other range. Figure 5-5 shows the receiver we will discuss. It is a highly sensitive, special purpose
receiver because it is capable of splitting-out multiplex signals for detection and reproduction. This receiver
covers the frequency range of 3 kilohertz to 810 kilohertz in five bands. It will receive most types of signals,
including AM, CW, SSB, FM, and FSK. All operator controls are on the front panel, and a speaker and headset jack
permit monitoring.

Figure 5-5. - Typical VLF to mf receiver.
Our receiver has five basic stages excluding the power supply. With the exception of a video amplifier in place
of an RF amplifier, the circuits perform the functions normally associated with a typical receiver. Figure 5-6 is
a block diagram showing the signal paths of the receiver. The input stage consists of a low-pass filter, an
attenuator, a calibration oscillator, and a video amplifier. The low-pass filter passes input frequencies below
900 kilohertz. These frequencies are passed to the attenuator, which sets the signal to the proper level to drive
the mixer. This minimizes noise and distortion. The calibration oscillator produces a 250-kilohertz output. It is
used to calibrate the receiver level and to check for tuning dial accuracy. The input signal is direct-coupled
from the attenuator to the video amplifier. This amplifier is a broadband, constant-impedance driver for the
mixer. The oscillator-mixer stage consists of a mixer, phase splitter, local oscillator, and frequency control
circuits.
5-6

Figure 5-6. - Receiver block diagram.
A Hartley configuration is used for the local oscillator. The oscillator output is equal to the tuned
frequency plus 2.215 megahertz. Two voltage-variable capacitors are used in the local oscillator to stabilize
small frequency variations. A phase splitter is used to drive the mixer diodes into conduction during half of the
local oscillator cycle. The mixer circuit uses the diodes to heterodyne the input signal with the local
oscillator signal from the phase splitter. The diodes short the signal to ground during half the local oscillator
cycle.
The IF amplifier stages consist of the mixer amplifier, four selectable bandwidth filters, three IF amplifiers,
and an IF buffer amplifier. The output of the mixer is directly coupled to the mixer amplifier. The IF
signal is then directed through one of four bandwidth filters to the first IF amplifier. The signal proceeds to
the second and third IF amplifiers for amplification before demodulation. An IF buffer amplifier is used to pass
the IF to the IF OUT jack and to isolate this jack from the rest of the circuitry. Three demodulators are
used in this receiver. They are the AM detector, product detector, and FM detector. The AM detector is used to
demodulate AM signals. The product detector demodulates SSB, CW, and FSK signals, and the FM detector demodulates
FM signals only. An output from the FM detector is provided to the FM OUT jack. This FM output may be used for
recording or detailed analysis.
5-7
The output from the selected demodulator is amplified by the audio amplifier and presented
simultaneously to the HEADSET jack, AUDIO OUT terminals, and the speaker. You should note that this
receiver, as with most others, requires no other special equipment. It uses a standard DF loop or a whip antenna.
If it is installed in a submarine, a trailed, (towed) long-wire antenna may be used. MICROWAVE
Communications systems in the 1 gigahertz to 10 gigahertz portion of the radio frequency spectrum use
line-of-sight propagation. Propagation takes place in the lower atmosphere (troposphere). It is affected by
factors such as barometric pressure, temperature, water vapor, turbulence, and stratification (forming of
atmospheric layers). A typical microwave transmitter includes an exciter group, a modulator group, a power
amplifier, and power supplies. The transmitter usually has a power output of about 1 watt. When a higher output is
required (about 5 watts), a traveling-wave tube (TWT) is used as the amplifier. (A TWT is a high-gain, low- noise,
wide-bandwidth microwave amplifier. It is capable of gains of 40 decibels or more, with bandwidths of over an
octave. The TWT was discussed in chapter 2 of NEETS, Module 11, Microwave Principles.) A typical microwave
receiver contains an RF-IF group, local oscillator, demodulator, and amplifier. Both transmitters and receivers
contain special circuits because of the high operating frequencies and critical frequency stability requirements.
Line-of-Sight System A line-of-sight (los) microwave system consists of one or more
point-to-point hops as shown in figure 5-7. Each hop is designed so that it can be integrated into a worldwide
communications network. Los systems have many characteristics. In these systems, propagation is only affected by
changes in the troposphere. The distance between microwave system hop points ranges from 50 to 150 kilometers (31
to 95 statute miles). These systems are capable of handling up to 600 4-kilohertz voice channels and can also
transmit television. These signals can usually be transmitted with less than 10 watts of power. Both the
transmit and receive antennas are horn-driven paraboloids that provide high gain and narrow beam widths. In some
applications, as shown in figure 5-8, plane reflectors are used with the paraboloids. These systems are very
reliable. They are designed to operate over 99 percent of the time. These systems are well adapted to multichannel
communications and closed circuit television.

Figure 5-7. - Typical hop-link and section allocation.
5-8

Figure 5-8. - Parabolic antenna and passive reflector combination.
Now let us take a look at another system. It is called the tropospheric-scatter microwave system. But first,
you may want to review tropospheric propagation in NEETS, Module 10, Introduction to Wave Propagation,
Transmission Lines, and Antennas. Tropospheric Scatter System A
tropospheric-scatter (tropo-scatter) microwave system gets results similar to those of the line-of- sight system.
It does it in a different way. The los system uses towers to relay information. The tropo system uses the
turbulence in the layer between the troposphere and the stratosphere to bounce signals back to earth. This method
provides several hops and communications beyond los. The propagation reliability and communications capability is
the same. The transmission range is up to 800 kilometers (500 statute miles). Transmitter output power may be up
to 75 kilowatts depending on the operational requirements. The antennas are horn-driven paraboloids and may be as
large as 50 to 60 feet in diameter. Figure 5-9 shows a typical tropospheric-scanner antenna. Remember that hf has
a hop distance (skywave) of about 1,400 miles; the distance of one hop for a line-of-sight system is between 31
and 95 miles. The tropospheric-scatter system conveniently fills the gap between these distances.
5-9

Figure 5-9. - Mobile 30-foot tropospheric-scanner antenna.
Both of these systems are used ashore. You're now going to get a look at a shipboard data information exchange
system. Q1. What is a dummy load? Q2. What is the function of a product
detector? Q3. What is the frequency range of the mf band? Q4. Microwave
systems use what portion of the atmosphere? Q5. What is the voice channel capacity of an los
communications system? Q6. What is the one-hop transmission range of a tropospheric-scatter
system? NAVAL TACTICAL DATA SYSTEM In recent years, the Navy has introduced
several new highly technical and effective combat weapons systems. However, these weapons systems did not solve
the basic combat command problems that confront our Navy. In combat, a fleet continues to be involved in
close-range offense and defense. During close-range combat, the shipboard combat information center (CIC) is
involved in complex tactical situations. These situations require intelligent and highly important decisions. Each
decision has to be made in a short period of time. You will find the speed at which these combat situations must
be solved is inconceivable to someone thinking in terms of typical CIC operations of the recent past. Therefore,
the NTDS was developed by the U.S. Navy as a command tool for commanders in tactical combat situations.
Objectives
The naval tactical data system (NTDS) is based on the interaction of humans and machines. The NTDS helps
coordinate fleet air defense, antisubmarine warfare, and surface defense operations. Through
5-10
NEETS Table of Contents
- Introduction to Matter, Energy,
and Direct Current
- Introduction to Alternating Current and Transformers
- Introduction to Circuit Protection,
Control, and Measurement
- Introduction to Electrical Conductors, Wiring
Techniques, and Schematic Reading
- Introduction to Generators and Motors
- Introduction to Electronic Emission, Tubes,
and Power Supplies
- Introduction to Solid-State Devices and
Power Supplies
- Introduction to Amplifiers
- Introduction to Wave-Generation and Wave-Shaping
Circuits
- Introduction to Wave Propagation, Transmission
Lines, and Antennas
- Microwave Principles
- Modulation Principles
- Introduction to Number Systems and Logic Circuits
- Introduction to Microelectronics
- Principles of Synchros, Servos, and Gyros
- Introduction to Test Equipment
- Radio-Frequency Communications Principles
- Radar Principles
- The Technician's Handbook, Master Glossary
- Test Methods and Practices
- Introduction to Digital Computers
- Magnetic Recording
- Introduction to Fiber Optics
|