Here is the "Electricity  Basic Navy Training Courses"
(NAVPERS 10622) in its entirety. It should provide one of the Internet's
best resources for people seeking a basic electricity course  complete with examples
worked out. See
copyright. See
Table of
Contents. • U.S. Government Printing Office; 1945  618779
Power, energy, force, and work are all physical
entities whose definitions are often incorrectly interchanged. As with most cases
in physics, knowing the unit associated with each entity is a way to remember what
it represents. For instance, force is fundamentally understood as a mass being
acted upon by an acceleration  whether it be gravity or motion. Its
SI units are kg·m/s^{2} (newton, with
dimensions of mass x length / time^{2}). Energy is a force in motion (or
its potential by virtue of relative position) with units of force x mass (joule,
with dimensions of mass x length^{2} / time^{2}), and an electrical
unit of watt·seconds (power x time). Work is force through a distance, with dimensions
of mass x length^{2} / time^{2}, which is the same as energy, so
work and energy are equivalent measures. The difference is that work is generally
thought of as something having happened versus energy being what is needed to make
it happen. Power is the rate of doing work, or power / time (units of watts, with
dimensions of mass x length^{2} / time^{3}). Well, I'm certainly
glad to have cleared that up for everyone ;). On second thought, just be sure to
keep an Internetconnected device onhand to make sure you're using the physical
terms correctly. Media sources written by
Jschool
grads regularly misuse physical terms.
Chapter 7: Electrical Power  Force
Scientists and technicians make a point
of specifically defining all the terms they use. They like their language to say
exactly what they mean. This is necessary because scientists use technical terms
in explaining their work. With a good working knowledge of such terms as force,
power, work, emf, current, and resistance, you'll be far more savvy about your own
work. Too, you'll want to be sure so that you can shoot the breeze about your job.
Knowing exactly what certain words mean helps a lot!
You often hear the word force. But you use force far. more) often than you hear
the word. Every time you lift something, you use force. Every time you move, you
have exerted force. A ship moves through the water because of force. In fact, every
time anything moves or tends to move, force has been exerted. Force may be a push
or a pull. force then, is that which produces motion or tends to produce motion.
Consider the force of gravity. It causes bodies to move toward the earth. Suppose
you put a box on a table. The box tends to move downward because of gravity but
the table exerts an upward force  the two forces are balanced. However, if the
box is "too heavy" for the table, the table cannot exert enough upward force to
balance the pull of gravity and the table collapses.
The force exerted by a propeller is a mechanical force. The explosion of hydrogen
and oxygen to form water is a chemical force. The force which causes electrons to
flow is an electromotive force and its unit is the volt. There are many kinds of
force, but they all produce or tend to produce motion.
Work
Work is a force acting through space. Imagine that you push with. all your strength
against a steel bulkhead. You probably think you've alone, work but technically
you haven't. True, you have exerted force on the bulkhead, but since the bulkhead
hasn't moved, no work has been done. Now imagine that you exert the same force lifting
a 200pound shell from the deck to a shelf 4 feet high. work has been done, because
the force acted through space'. You exerted a 200pound force through a distance
of 4 feet.Work = force x distance
so in this case 
Work =200 pounds x 4 feet = 800 footpounds (ft.lb.)
Note that work and force are different. Force is exerted whenever a body is pushed
or pulled but work is done only if the body moves. In electricity, the unit of work
is the joule.
Electrical work = voltage x coulombs = joules
The joule, by itself, has relatively little use because it does not take into
consideration the factor of time. That is, it might take 2 seconds or 2 days for
120 volts to move 1 coulomb (6.3 billion billions electrons); and in either case,
you would have done 120 x 1 = 120 joules of electrical work. So time is really important
 and that brings you to power.
Power
Figure 34  Power consumption of a motor.
Power is the time rate of doing work. This relation is expressed as:
Power = Work/Time
You have learned that the amount of work done has nothing to do with the time
it takes to do the work. But the amount of power depends on how fast that work can
be done. You know that a steam shovel has a great deal more power than a man. Both
can do the same amount of work but the steam shovel will do it a lot faster. For
example, say that 1,000 pounds of earth must be raised 20 feet. The work is:
Work = force x distance = 1,000 x 20 = 20,000 footpounds.
The steam shovel does the job in one scoop, taking 2 seconds. The man does the
job in 20 minutes (or 1,200 seconds). The steam shovel has 
Power = Work/Time = 20,000/2 = 10,000 ft.lb. per second of
power
The man has:
Power = Work/Time = 20,000/1,200 = 16.7 ft.lb. per second of
power
The steam shovel has exerted approximately 600 times as much power as the man
even though the work done by both is equal.
The mechanical unit of power  footpounds per second  is too small for practical
use. In the early days, power was generally supplied by horses, and experiments
indicated that an average horse could do 550 footpounds of work per second. This
led to the establishment of a larger unitthe horsepower (HP).
HP = 550 ft.lbs. per second
What was the HP of the steam shovel in the preceding example?10,000 ft.lbs. per sec./550 ft.lbs. per second = 18.2 HP
What was the HP of the man?
16.7 ft.lbs. per second/550 ft.lbs. per second  0.032 HP
Power in the electrical system is measured in watts.
Power = Work/Time = Volts x Coulombs/Time = Watts (w.)
Do you recognize the expression  Coulombs/Time? In Chapter 3, you learned that
coulombs divided by time was the time rate of flow of current  the ampere. So you
can substitute ampere for Coulomb/Time in the above equation, and the equation becomes

Power = volts X amperes = Watts, or:
P=E x I
power is an important measure in electricity. It tells you how much you can expect
from a motor or generator.
Study the circuit in figure 34. It shows a motor connected to its generator;
and meters are installed to read the values of current and voltage in the circuit.
By multiplying the ammeter and voltmeter readings, you get the power consumed by
the motor:
P = E x I = 120 x 8 = 960 watts
which means that this motor consumes 960 watts of power.
By measuring the amount of mechanical work a number of electric motors did in
one second, it was determined that 746 Watts = 1 HP
Figure 35  Delivered and lost power in a motor.
Does the motor deliver 960 watts, or 960/746 = 1.29 HP, of power? No, because
some of the power is lost within the motor. This loss is caused by internal heat
and friction. all machines lose some power by heat and friction. If they didn't,
they would be 100 percent efficient and there would be perpetual motion. Efficiency
is the percentage of the total input power that is actually delivered as output.
Motors deliver their power at their shafts. Say that this particular motor is a
oneHP job. This means that the motor delivers one HP at its shaft.
What is its efficiency?
Input = 960 watts
Output = 1 HP = 746 watts Efficiency = Output/Input
= 746/960 = 0.777, or 77.7%
The motor is 77.7 percent efficient  in other words, it delivers 77.7 percent
of the power it consumes. The balance of power  22.3 percent is lost as heat and
friction. Look at figure 35. It shows the power and the power losses as a picture.
If you follow the arrows through this picture of a motor, you will find the input
power is electrical power. It splits up in the motor, going in two directions. The
losses in the form of heat are radiated upward, and the output in the form of mechanical
power is delivered by a rotating shaft. This gives you the definition of a motor
 A machine which converts electrical energy into mechanical energy. (Just the opposite
to the action of a generator.)
How much work is this motor capable of doing? Since 1 HP = 550 ftlbs. per second,
the motor can exert a force of 550 pounds through 1 foot of space every second.
Or, 275 pounds through 2 feet of space every second. Or, 55 pounds through 10 feet
of space every second. You'll notice that the force decreases as the speed increases.
To be sure you understand these terms, consider a harder example. Figure 36 shows
a circuit involving a 10 HP motor, a generator, meters, and a 'l,000foot length
of double wire connecting lines.
Figure 36  Power loss in a long line.
The generator furnishes 440 volts of emf, but the motor draws 25 amperes at only
390 volts. The difference 50 volts  is used in pushing the current through the
2,000 feet (1,000 ft. for each wire) of connecting wire.
You can calculate the resistance of this wire:
R = E/I = 50/25 = 2 Ω
which means that 50 volts of force are used in pushing 25 amperes of current through
2,000 feet of wire having 2 ohms of resistance.
How much power is consumed by the motor?
P = E x I = 390 x 25 = 9,750 w
What is the efficiency of this 10 HP motor?
Efficiency = output/input = 10 x 746/9.750 = 7.460/9,750 = 76.5%
How much power is lost in the motor by heat and friction?
Losses = input  output = 9,750  7,460 = 2,290 w.
What is the power consumed by the line in delivering current to the motor?
P = E x I = 50 x 25 = 1,250 w.
As a check, you know that total power furnished, minus all losses, should give
the power output of the motor. In this case, 440 x 25 = 11,000 watts is the power
furnished. The losses are 2,290 + 1,250 = 3,540 watts. The output then is 11,000
 3,540 = 7,460 watts. This checks with the rated output.
Remember  whenever work must be done, power is consumed doing it. It requires
work to force current through a wire  in this case, 1,250 watts of power is consumed
by the wire. It requires work to overcome the friction of the motor and force current
through its windings  2,290 watts of power is consumed in doing this work. Finally,
the motor is capable of furnishing 10 HP or 7,460 watts at its shaft to do work.
The power equation may be used in three forms depending on the problems to be
worked:
P = EI; E = P/I; I = P/E
Examples
1. Determine the value of current in a 100 watt lamp on a 115 volt line.I = P/E = 100/115 = 0.87 amp.
2. Determine the potential drop of a line which consumes 1,200 watts in carrying
60 amperes.
E = P/I = 1,200/60 = 20 v.
3. Determine the power consumed by a 440 volt motor, if it draws 22 amperes.
P = E x I = 440 x 22 = 9,680 w.
4. What is the HP of the motor in question 3?
HP = P/746 = 9,680/746 = 13 HP
Large and Small Units
You ordinarily would measure butter by the pound and coal by the ton. Think how
clumsy it would be to reverse this procedure  butter by the ton and coal by the
pound. The simple units of electrical measure  volts, amperes, ohms, and watts
 prove to be clumsy when very large or extremely Small quantities are involved.
A system of prefixes has developed for use in measuring large and small quantities
of electrical units. The table below gives the common prefixes used in electricity.
Each prefix can be used with any of the electrical units. For example, instead of
saying "a 10,000 watt generator," it is handier to say "a 10 kilowatt generator."
Instead of writing "0.010 amperes" it is easier to write "10 milliamperes." In testing
insulation you will use megohms instead of millions of ohms. In radio work, the
micro and milli prefixes are constantly used.
Mega ................ Million (1,000,000)
Kilo ................. Thousand (1,000)
1 Milli .............. Onethousandth (1/1,000)
1 Micro ............ Onemillionth (1/1,000,000)
Chapter 7 Quiz
(click here)
Posted June 21, 2019
