Electronics World articles Popular Electronics articles QST articles Radio & TV News articles Radio-Craft articles Radio-Electronics articles Short Wave Craft articles Wireless World articles Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs LinkedIn Crosswords Engineering Humor Kirt's Cogitations RF Engineering Quizzes Notable Quotes Calculators Education Engineering Magazine Articles Engineering software RF Cafe Archives RF Cascade Workbook 2018 RF Symbols for Visio - Word Advertising Magazine Sponsor RF Cafe RF Electronics Symbols for Visio RF Electronics Symbols for Office Word RF Electronics Stencils for Visio Sponsor Links Saturday Evening Post NEETS EW Radar Handbook Microwave Museum About RF Cafe Aegis Power Systems Anritsu Alliance Test Equipment Amplifier Solutions Anatech Electronics Axiom Test Equipment Berkeley Nucleonics Centric RF Conduct RF Copper Mountain Technologies Empower RF everything RF Exodus Advanced Communications Innovative Power Products ISOTEC KR Filters PCB Directory Rigol San Francisco Circuits Reactel RF Connector Technology TotalTemp Technologies Triad RF Systems Windfreak Technologies Withwave LadyBug Technologies Wireless Telecom Group Sponsorship Rates RF Cafe Software Resources Vintage Magazines RF Cafe Software RF Cafe Sponsor Links Temwell Werbel Microwave Thank you for visiting RF Cafe!
DC-70 GHz RF Cables - RF Cafe

Radio Signals from Jupiter Studied by N.B.S.
August 1957 Radio & TV News

August 1957 Radio & TV News
August 1957 Radio & TV News Cover - RF Cafe[Table of Contents]

Wax nostalgic about and learn from the history of early electronics. See articles from Radio & Television News, published 1919-1959. All copyrights hereby acknowledged.

In the days before space-based radio astronomy, observations on many frequencies required waiting until nightfall because the Earth's ionospheric activity interfered with signals in many bands of interest. Two such bands are 18 MHz and 20 MHz (16 and 15 meters, respectively), on which information on lightning-type discharges from Jupiter are received. Near-real-time maps of ionospheric absorption in the D layer (caused by solar x-ray activity) are available on the Solar Terrestrial Dispatch website for 5 through 30 MHz, which is where long-range high frequency (HF) communications occur. The F2 layer is where signals are usually reflected, but absorption in the lower D layer can be severe enough to limit reception.

Signals from Jupiter Studied by N.B.S.

Reception cones of Jupiter's radio emissions - RF Cafe

The reception cones of Jupiter's radio emissions as limited by Jupiter's ionosphere.

BOulder, CO, antennas direct radio signals originating 500 million miles away - RF Cafe

These antennas direct radio signals originating 500 million miles away from earth to recording equipment located in the trailer.

Distant planet emits pulse-type radiation that appears to indicate the presence of a surrounding ionosphere.

For about two years astrophysicist Roger Gallet at the Boulder Laboratories of the National Bureau of Standards has been studying radio signals of tremendous power from Jupiter. Gallet's work rules out thunderstorms as the possible source since lightning discharges, unlike the signals being received from the planet, broadcast on all frequencies at the same time and have other different characteristics.

The actual signals consist of 2-second pulses having 100 thousand times more energy than that contained in a strong local lightning discharge, and 30-millisecond pulses of infrequent repetition. Concerning the origin of the signals, it is suggested that they may have a shock-wave origin possibly from geyser-like phenomena or volcanic activity, although different from any such activity we know on earth, because the material constituting Jupiter is different from Earth.

Perhaps the most important evidence on Jupiter that has been collected is that which seems to prove that the huge planet has a strongly ionized upper atmosphere - an ionosphere - similar to our own. And just like our ionosphere its electronic density varies in relation to the amount of ultraviolet radiation given off by the sun. Emissions, recorded at a specific frequency, come through a cone of transmission radiating from the source. This seems to indicate that the radio waves within the cone are penetrating Jupiter's ionosphere, but the oblique waves outside the cone are being reflected back to Jupiter by its ionosphere.

It has also been found that the cone is larger for 20 than for 18 megacycles. These are the two frequencies on which the observations are conducted.

Interestingly enough, this radio astronomy work must be done only at night when our ionosphere is less ionized and the Jupiter waves can come through.

Here is screen shot of near-real-time maximum usable frequency (MUF) for regions on the earth.

Proplab-Pro MUF screen shot - RF Cafe

Posted  January 27, 2014

Rigol DSG5000 Microwave Generator - RF Cafe
Innovative Power Products Passive RF Products - RF Cafe
KR Electronics (RF Filters) - RF Cafe
Copper Mountain Technologies (VNA) - RF Cafe

Please Support RF Cafe by purchasing my  ridiculously low−priced products, all of which I created.

These Are Available for Free


About RF Cafe

Kirt Blattenberger - RF Cafe Webmaster

Copyright: 1996 - 2024


    Kirt Blattenberger,


RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The World Wide Web (Internet) was largely an unknown entity at the time and bandwidth was a scarce commodity. Dial-up modems blazed along at 14.4 kbps while tying up your telephone line, and a nice lady's voice announced "You've Got Mail" when a new message arrived...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website: