RF Cafe Software

RF Cascade Workbook 2005 - RF Cafe
RF Cascade Workbook

Calculator Workbook
RF Workbench
Smith Chartâ„¢ for Visio
Smith Chartâ„¢ for Excel
RF & EE Symbols Word
RF Stencils for Visio

About RF Cafe

Kirt Blattenberger - RF Cafe WebmasterCopyright
1996 - 2016
Webmaster:
Kirt Blattenberger,
 BSEE - KB3UON

RF Cafe began life in 1996 as "RF Tools" in an AOL screen name web space totaling 2 MB. Its primary purpose was to provide me with ready access to commonly needed formulas and reference material while performing my work as an RF system and circuit design engineer. The Internet was still largely an unknown entity at the time and not much was available in the form of WYSIWYG ...

All trademarks, copyrights, patents, and other rights of ownership to images and text used on the RF Cafe website are hereby acknowledged.

My Hobby Website:
 AirplanesAndRockets.com

Try Using SEARCH
to Find What You Need. 
There are 1,000s of Pages Indexed on RF Cafe !

Electronics World Cover,TOC,and list of posted Popular Electronics articles QST Radio & TV News Radio-Craft Radio-Electronics Short Wave Craft Wireless World About RF Cafe RF Cafe Homepage RF Cafe in Morse Code Google Search of RF Cafe website Sitemap Electronics Equations Mathematics Equations Equations physics Manufacturers & distributors Engineer Jobs Twitter LinkedIn Crosswords Engineering Humor Kirt's Cogitations Engineering Event Calendar RF Engineering Quizzes AN/MPN-14 Radar 5CCG Notable Quotes App Notes Calculators Education Magazines Software,T-Shirts,Coffee Mugs Articles - submitted by RF Cafe visitors Simulators Technical Writings RF Cafe Archives Test Notes RF Cascade Workbook RF Stencils for Visio Shapes for Word Thank you for visiting RF Cafe!

Bell Telephone Laboratories Advertisement
January 1954 Radio & Television News Article

January 1954 Radio & TV News
January 1954 Radio & Television News Cover - RF Cafe[Table of Contents]

These articles are scanned and OCRed from old editions of the Radio & Television News magazine. Here is a list of the Radio & Television News articles I have already posted. All copyrights are hereby acknowledged.

GeAs (germanium and arsenic) was the semiconductor substrate material of choice long before the III-V series like GaN and GaAs came along. GeAs would be considered a III-IV semiconductor since Ge is in group IV of the periodic table (Ga is group III, As is group V). It is actually know simply as germanium. 1954, when this advertisement from Bell Telephone Laboratories appeared in Radio & Television News magazine, was the same year that Texas Instruments (TI) introduced the world's first commercially available silicon (Si) transistor. The GeAs boule photo in the ad was printed "life size," which makes it around 2" in diameter. Compare that to 12" diameter wafers standard today for Si. Gallium nitride (GaN), a more exotic high frequency, high temperature semiconductor compound, just recently grew (literally) beyond a 2" diameter boule size where it had been stuck for a decade. Individual device sizes have decreased while wafer sizes have increased, so the number of devices per wafer is way up and the cost per device is way down.

Bell Telephone Laboratories Ad

Bell Telephone Laboratories Ad, January 1954 Radio & Television News - RF Cafe

Germanium crystal grown at Bell Telephone Laboratories (life size). It is sliced into hundreds of minute pieces to make Transistors. Transistor action depends on the flow of positive current-carriers as well as electrons, which are negative. Arsenic - a few parts per 100,000,000 - added to germanium produces prescribed excess of electrons. With gallium added, positive carriers predominate. Latest junction type Transistor uses both kinds of germanium in the form of a sandwich.

They Grew it for Transistors

Heart of a Transistor - Bell Telephone Laboratories' new pea-size amplifier - is a tiny piece of germanium. If Transistors are to do their many jobs well, this germanium must be of virtually perfect crystalline structure and uniform chemical composition. But it doesn't come that way in nature.

So - Bell scientists devised a new way to grow the kind of crystals they need, from a melt made of the natural product. By adding tiny amounts of special alloying substances to the melt, they produce germanium that is precisely tailored for specific uses in the telephone system.

This original technique is another example of the way Bell Laboratories makes basic discoveries - in this case the Transistor itself - and then follows up with practical ways to make them work for better telephone service.

Section of natural germanium, left, shows varying crystal structure. At right is sectioned single crystal grown at Bell Laboratories.

Improving Telephone Service for America Provides Careers for Creative Men in Scientific and Technical Fields

Bell Telephone Laboratories

 

Posted July 6, 2015