May 1932 RadioCraft
[Table
of Contents]
People old and young enjoy waxing nostalgic about and learning some of the history of early electronics.
RadioCraft was published from 1929 through 1953. All copyrights are hereby acknowledged. See all articles
from RadioCraft.

This might be one of the earliest
printed instances of Harold A. Wheeler's
simplified formulas for the three basic inductor forms. We all use them on a regular basis, but for most the origin
was never known or has long since been forgotten (I fall into the latter category).
I did some research on Wheeler's inductance formulas a few months ago
when writing an app, so it was sort of déjà vu when this blurb appeared in a 1932 edition of RadioCraft.
Simplified Coil Calculation
By G H. W. Nason
The archaic method of calculating inductances involves a formula taking into account not only the actual dimensions
of a winding and the number of turns of wire, but a form factor "K" dependent upon the ratio of length to diameter
of the form on which the coil is wound. (See page 109, August 1931 issue.) While these formulas are no doubt, accurate
to a minute degree in capable hands, the errors possible are manifold; and rarely, if ever, does a coil so designed
come within a reasonable degree of the desired inductance.
Inductance Calculation Dimensions
A considerable simplification of the design problem was evolved several years ago by Harold A. Wheeler of the
Hazeltine Laboratories, who is responsible also for the multiplex detector and automatic volume control used by
Philco, Fada, and other Hazeltine licensees.
In the illustrations, herewith, three types of windingso which cover practically every case within the needs
of the experimenter or Service Man in his daily work are shown. First, we have a multilayer winding, such as might
be employed in the intermediatefrequency transformers of a superheterodyne receiver. Second on the list is a simple
solenoid of the type used in tile tuned circuits of broadcast receivers. The last is a helical (spiral) winding
such as might be used either as a coupling coil in a band selector, as an antenna coupling coil, or as a primary
winding for an R.F. transformer. The equations for calculating the inductance are given with each sketch. All dimensions
are to be taken in inches, and the answer will be obtained directly in microhenries.
The method compares quite favourably with Nagaoka's formula as to accuracy, and is many times easier to use than
the older method, in which the form factor had to be taken into account. Accuracy to 1% is obtainable in the case
of the multilayer coil, when the three terms in the denominator (below the line) are nearly equal. The accuracy
in the case of the simple solenoid is also to 1% when the length of the winding is greater than fourfifths times
the diameter. In the third case. this degree of accuracy is obtainable when the dimension "c" is greater than one
fifth the dimension "a".
In no case will the error be greater than is possible with the more tedious method formerly used, when the most
exacting care is taken. All that is necessary for the calculation of inductance values is a ruler, a pencil and
a copper wire table giving the diameter of various wire sizes, so that the space occupied by a given winding may
be known. (See page 186, September 1931 issue).
Posted August 31, 2015