October 1930 RadioCraft
[Table
of Contents]
People old and young enjoy waxing nostalgic about and learning some of the history of early electronics.
RadioCraft was published from 1929 through 1953. All copyrights are hereby acknowledged. See all articles
from RadioCraft.

If you are from a family
of electronics hobbyists and/or professionals, then there is a good chance your grandfather and possibly even your
father kept a handydandy list of common circuit design formulas handy. The list certainly included the formulas
on this page. There was not 'app for that' back in those days. Prior to a smartphone in every pocket, notes were
pinned to a lab wall or kept in a handwritten notebook.
Simple Mathematics for the Service Man
(Part II)
By Boris S. Naimark
The amplification constant of a tube  written as μ and pronounced "mu"may be defined as the ratio of the
change in plate voltage, which is necessary to produce a certain change in the plate current, to the change in grid
voltage which will produce the same change in the plate current. Structurally, the "mu" of a tube depends upon the
mesh of the grid and upon the spacing between the grid and plate. Electrically it denotes the maximum theoretical
voltage amplification possible or available within the tube.
A chart of formulas which may come in handy at any time.
The. plate impedance or plate resistance of a tube may be defined as the ratio of change in the plate voltage
to the change in plate current, and is expressed in ohms. In tube charts the specified values of plate impedance
are the A.C. values; the D.C. values of plate resistance are equal to twice the value of the A.C. plate resistance.
Mutual conductance  indicated as Gm  may be defined as the ratio of the change in plate current to the change
in grid voltage, and is ordinarily expressed in micromhos.
By the external impedance of a tube is meant the impedance of the coupling unit or device which is connected
between the plate and the filament of the tube. Considerations of external impedance are of paramount importance;
since the relation between the value of a tube's plate impedance, and the impedance of its external platetofilament
circuit, governs the power output as well as the voltage amplification obtainable from a given tube or tubes. In
this connection, it is of interest that the plate impedance of two tubes connected in parallel is just half of the
plate impedance of one of the individual tubes; while the plate impedance of two tubes connected in pushpull is
equal to twice the impedance of one of the tubes. (The above is true only when two identical tubes are used.) It
can be shown that the full value of the "mu" of a tube can be obtained only when the value of the external impedance
is infinite.
Power Output
In practice, ninety per cent. of the "mu" of a tube is available when the external impedance is between five
and ten times as great as the tube's plate impedance. The maximum undistorted power output of a tube is available
only when the value of the external impedance is equal to twice the tube plate impedance.
In addition to the "mu," and the external and internal plate impedances of a tube, the power output depends upon
the value of the signal input voltage. Doubling the value of the signal input voltage doubles the voltage output
of a tube; but it quadruples the tube power output. In other words, voltage amplification is directly proportional
to the signal input voltage; whereas the power output of a tube is directly proportional to the square of the signal
input voltage. It should be understood that power tubes supply the full rated maximum undistorted power output only
when operated at or near the specified maximum safe plate voltages and when the input peak signal voltage is equal
to the recommended grid bias.
A study of tubes discloses the fact that tubes having comparatively high values of "mu," and therefore high values
of plate impedance, are most suitable for voltage amplification. Tubes having low values of "mu," and correspondingly
low values of plate impedance, show better power handling capacity, and are more suitable for the output, or power
stage of a radio receiver.
A study of circuit formulas is beyond the scope of this article; though we present some of them in our chart,
those who would learn the significance of them are referred to any standard text on radio.
Posted September 8, 2015