[Table
of Contents]These articles are scanned and OCRed from old editions of the
ARRL's QST magazine. Here is a list of the
QST articles I have already posted. As time permits, I will
be glad to scan articles for you. All copyrights (if any) are hereby acknowledged. 
The word 'transformer' in the
title for this article does not refer to a mutual inductance transformer, but an impedance transformer
for matching transmission lines to antennas (or anything else for that matter). Author T.A. Gadwa gives
examples of
impedancematching circuits both for when the antenna impedance is lower than the
characteristic impedance of the transmission line and when the antenna impedance is higher than that of
the feed line. "L," "pi," and a couple other circuit configurations are covered.
See all available
vintage QST articles.
An ImpedanceMatching Transformer TutorialA Simple Method
for Matching the Antenna to the Transmission Line
By T.A. Gadwa, SC.D., W2KHM
Fig. 1  Parallelresonant circuit with equivalent series and parallel resistances.
Fig. 2  An impedancematching circuit using series or tapped inductances.
Fig. 3  The pisection filter, another type of impedancematching circuit.
Fig. 4  These circuits resemble those of Fig. 2 with L and C interchanged. 
While those of us at home don't have many opportunities these days to try tuning up antenna systems, the method
described in this article will some day be useful to us. At present, it can be applied to WERS communication, design
data for a suitable coupler being included in the article.
Any simple and inexpensive method of coupling
an antenna to a transmission line always is attractive to amateurs. Numerous articles on untuned feeders have outlined
their advantages  lower losses, reduced feeder radiation and operation independent of line length. An antenna placed
in a favorable location and supplied power by untuned feeders or transmission lines is frequently desirable, but
coupling one end of the transmission line to the plate circuit and the other to the antenna does not solve the problem
satisfactorily. To transfer power most efficiently on such a transmission line, the load resistance must equal the
generator resistance. This means that power is absorbed by the load and none is reflected back to the sending end
to produce standing waves. If the termination differs from this load resistance, standing waves appear on the line,
representing wasted power that never reaches the antenna. The character of standing waves for various types of loads
has been described previously
^{1} and may be reviewed for reference purposes.
A transmission line
of two parallel conductors has a characteristic impedance which is determined by the physical dimensions of the
system: diameter of the conductors, their spacing and the insulation or dielectric. The equation for calculating
the impedance of an openair twowire parallel line is:
R
_{o} = 276 log 2S/D (1)
where R_{o} = characteristic impedance of the line in ohms
S = spacing between
conductor centers in any units
D = diameter of conductor in same units
Impedance
Transformation In come cases, the impedances of an antenna and transmission line are not equal
and some sort of transformation must occur before the load can be matched to the line. It is possible to convert
an impedance to a higher or lower value by utilizing a circuit known as a filter, network or impedance transformer,
composed only of inductances and capacitances. When a filter of suitable design is inserted between the antenna
and transmission line, the load presented to the line will be equal to the line impedance, and an impedance match
for a flat line is possible. A parallelresonant circuit of inductance, capacitance and resistance, such as is shown
in Fig. 1, has different impedances between various points of the circuit. The impedance between any two points
can be found by combining the series and parallel elements in the usual manner. A pisection filter will accomplish
the same transformation, which is equivalent to tapping the antenna across a portion of the inductance or capacitance.
These arrangements, shown in Figs. 2, 3 and 4, are not recommended since they require one more element than the
circuit of Fig. 1; also, it is impossible to obtain a correct impedance transformation for certain combinations
of inductance and capacitance because of insufficient coupling. The impedance transformer should exhibit pure resistance
at its terminals, and Everitt
^{2} has shown what the values of the inductive and capacitive reactances should
be to satisfy this condition. Equations which have been used in previous QST articles,
^{3, 4, 5} are:
where
X_{L} = inductive reactance in ohms
X
_{C} = capacitive reactance
in ohms
R
_{1} = input or output resistance
R
_{2}
= output or input resistance
L = X_{L}/2πƒ (4)
C = 1/2πƒX_{C} (5)
ƒ = frequency in cycles per second
L = inductance in henrys
C = capacitance in farads
A resonant antenna can be connected to one pair of terminals and its effective impedance at the second
pair of terminals changed to equal that of the line. The antenna behaves like a series resonant circuit and is a
pure resistance at resonance. It is reactive off resonance  capacitive at frequencies below resonance and inductive
at frequencies above resonance. For the case where the resistance of the antenna is lower than that of the transmission
line, the circuits in Fig. 5 can be employed. Circuits in Fig. 6 are used when the antenna resistance is higher
than the line impedance. Symmetrical arrangements of the circuits for connection to a twowire line are shown in
Figs. 5C, 5D, 6C and 6D. In Figs. 5C and 6C, onehalf the total inductance is put in each leg when the coils
are not inductively coupled. In Figs. 5D and 6D, one fourth the total inductance (half the total number of turns)
is put in each leg when the coils are inductive coupled.
To aid in the solution of equations (2) and (3)
curves are presented in Figs. 7 and 8. From the inductive and capacitive reactances, the inductance and capacitance
can be determined from equations (4) and (5). From the inductance, the coil diameter, length of winding and number
of turns may be found by the usual formulas or from a Lightning Calculator.
Fig. 5  These impedancematching circuits are used when the antenna resistance is lower than
the characteristic impedance of the transmission line.
Fig. 6  Circuits for use when the antenna resistance is higher than the line impedance.
A Practical Example To illustrate the various steps in the calculation,
a typical case is solved. It is desired to match the resistance at the center of one element of a 2element closespaced
1/2wavelength antenna at 14.2 Mc. to an openair parallel 2wire line of No. 14 wire, with 6inch spacing between
wires. The characteristic impedance of the line is obtained from equation (1).
R
_{o} = 276 log (2
X 6/0.064) = 276 log (188) = 276 X 2.275 = 625 ohms
The antenna resistance may be assumed to be equal to
13 ohms. Since the line impedance is higher than the antenna resistance, a transformer of type shown in Fig. 5 must
be employed. The inductive reactance from equation (2a) is
X
_{L} = 13√(625/13 1) =
13 x 6.86 = 89.2 ohms
The required inductance, from equation (4) is
or 1.00 microhenry. Using the Handbook formula
where N = number of turns
A = diameter of coil in inches (let A = 1. 5 inches)
B = length of coil
in inches (let B = 1.5 inches)
L = inductance in microhenrys
Within small limits, the inductance can be increased by spacing the turns closer together and decreased by spacing
them farther apart. Antenna material is satisfactory for the coil, although heavier wire or copper tubing will keep
the losses to a minimum.
The capacitive reactance, from equation (3a) is
X
_{C} = 625 / √(625/13
1) = 625 / 6.86 = 91.1 ohms
The required capacitance, from equation (5), is
or 123 micromicrofarads. The voltage across the condenser is relatively low because of the low impedance involved.
Receiving type condensers are satisfactory, since the plate spacing need not be large for most amateur powers. A
twosection stator with sections in series is desirable because this construction eliminates losses in rotor connections.
For 300 watts through a 625ohm line, the voltage is
E = √(PR) = √(300 x 625) = 433 volts r.m.s.
Fig. 7  Parallel resistance vs. inductive reactance for various values of series resistance.
Fig. 8  Parallel resistance vs. capacitive reactance for various values of series resistance.

The peak is 433 X 1.414 = 610 volts and on 100 percent modulation the peak is 610 X 2 = 1220 volts.
The
tuning unit must be protected from the weather. One version of such an impedance transformer is illustrated in the
photograph. The coil and condenser are mounted in a weathertight box made of quarterinch tempered Masonite, with
feedthrough terminals brought out through the sides for the line and similar terminals at one end for the antenna.
Interference with the antenna radiation field by matching stubs, quarterwave sections and delta matching
sections are avoided when the transformer is used, since the transformer is concentrated in a much smaller space.
The frequency response of such a lowQ parallel circuit containing a series resistance is broad enough to be used
to advantage with closespaced antenna elements having a sharp frequencyresponse characteristic. Its application
is essentially to oneband antennas since impedance transformation is dependent upon the frequency of operation.
It must be emphasized that one and only one combination of inductance L and capacitance C will match a given antenna
resistance to a given line. As the ratio R
_{2}/R1 approaches unity, X
_{L} approaches zero and X
_{C}
approaches infinity; that is, the inductance and capacitance both become smaller. The resonant frequency of L and
C without R
_{1} may be considerably higher than with R
_{1} in the circuit.
Adjustment
It is highly desirable to be able to tune the unit when it is in its operating position at the
antenna. This may be done by varying the capacity until maximum antenna current is shown by an r.f. ammeter or lamp
bulb connected in the antenna at the junction to the transformer. Alternatively, one may adjust for minimum line
current at the line junction to the impedance transformer. Where this is impossible or inconvenient, it is permissible
to tune the coil and condenser to resonance before connecting the antenna and transmission line. Since the resonant
frequency of the coil and condenser alone always is higher than with the antenna in the circuit, the capacity is
then reduced sufficiently to compensate for the insertion of the antenna when the unit is in operating position.
If the antenna is resonant and the correct values of inductance and capacitance are employed, the line will be correctly
terminated. A constant current at all points along the line, or a slight increase of current toward the transmitter
or sending end, is the final test of a perfect impedance match.
A thermomilliammeter connected across a
portion of one feeder line at various positions is a good indicator of standing waves. A flashlight bulb connected
across a short length of one feeder is also a good current indicator and is inexpensive. The bulb should be shielded
to direct the light to the observer so that the neighbors' curiosity will not be aroused by night operation. If
bulbs are permanently located at intervals of 1/16 wavelength along the line, starting from the antenna, the brilliancy
vs. position shows the location of maximum and minimum line currents or standing waves.
Suggested construction of an impedancematching transformer for suspension from an antenna. The condenser is
controlled by the arm projecting toward the upper left. A pulley could he used for adjustment from the ground. 
If the antenna is nonresonant, its length must be adjusted or tuned to resonance. Excite the antenna parasitically
and obtain maximum antenna current by tuning. Noting the position of the standing waves on the transmission line,
as outlined in the article on standing waves,
^{1} also is recommended. One exception must be observed because
the resistance across the terminals of a parallelresonant circuit increases when the series resistance decreases.
In other words, the load resistance presented to the line is increased for a decrease in antenna resistance and,
conversely, the load resistance presented to the line is decreased for an increase in antenna resistance. This may
be understood by analyzing the approximate relationship that holds for a parallelresonant circuit of low series
resistance or high Q.
R
_{2} = L / (C x R
_{1})
This is true when R
_{1} is
relatively small and is approximately so for higher values of R
_{1}. It means that the parallel impedance
is increased by using larger inductance L and a smaller capacitance e (increasing L/C ratio), and by reducing the
series resistance R
_{1}. Conversely, the parallel impedance is decreased by using a smaller inductance L
and a larger capacitance e (decreasing L/C ratio) and by increasing the series resistance R
_{1}. The parallel
resistance always is greater than the series resistance.
If the antenna is resonant but incorrect values
of inductance and capacitance are used in the impedance transformer, a current loop or node will appear near the
1/4 wavelength point measured along the line from the transformer. If a current loop or maximum occurs at this position
the terminating resistance is too high, and a smaller inductance L and a larger capacitance C are required. If a
current node or minimum occurs near the 1/4 wavelength position, the terminating resistance is too low and a larger
inductance L and lower capacitance C are required.
If the antenna and line resistances are known, the ratio
of the line and antenna currents for an impedance match can be calculated from the square root of the antennatoline
resistance ratio. This is based upon the assumption that the power input to the transformer equals the power output;
i.e., that the losses in the transformer are negligible.
P = I
^{2}R = I
_{1}^{2}R
_{1}
= I
_{2}^{2}R
_{2} or
I
_{1} / I
_{2} = √(R
_{2} / R
_{1})
If an r.f. ammeter is available, measurement of the antenna and line currents will reveal the correct impedance
match from their ratio.
Fig. 9  This circuit is used for matching a halfwave antenna to a line having an impedance of the order of
500 ohms. Constants for 114 Mc. operation are given in the text. 
With 2 1/2 meters active for civilian defense, transmitting antennas and associated problems are under consideration
once again. A design is given in Fig. 9 for matching a halfwave antenna at 114 Mc. to an openair 2wire line of
No. 14 wire spaced 2 inches:
S = 2 inches spacing
D = 0.064 wire diameter, inches
R
_{2}
= 495 ohms, line impedance
R
_{1} = 73 ohms, antenna resistance
ƒ = 114 X 10
^{6} cycles
per second
X
_{L} = 175.8 ohms
L = 0.245µh.
A = 1 inch (coil diameter)
B = 1 inch (coil
length)
N = 3.8 turns
N/2 = 1.9 turns
X
_{C} = 206 ohms
C = 6.8 µµfd.
It is hoped that this method will not be overlooked when considering the problem of matching the antenna to
the transmission line. Because of its simplicity, it might well be adopted by the amateur radio fraternity.
^{1} Gadwa,
"Standing Waves on Transmission Lines," December, 1942, p. 17.
^{2}
Everitt, Communication Engineering, p. 75.
^{3} Andrews, QST, October, 1939, p.
39.
^{4} Plotts, QST, November, 1941, p. 15.
^{5} Roberts,
QST, January, 1928, p. 43. Posted 6/13/2013