Custom Search
Over 10000 Pages Indexed
Your Host
Click here to read about RF CafeKirt
Blattenberger

... single-
handedly
redefining
what an
engineering website
should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5CCG (5th MOB):
My USAF radar shop

Hobby & Fun

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse
riding business website -
lots of info

•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Job Board

About RF Cafe©

RF Cafe E-Mail

The Tuning Eye - How It Works
January 1955 Popular Electronics

January 1955 Popular Electronics

January 1955 Popular Electronics Cover - RF Cafe [Table of Contents]People old and young enjoy waxing nostalgic about and learning some of the history of early electronics. Popular Electronics was published from October 1954 through April 1985. As time permits, I will be glad to scan articles for you. All copyrights (if any) are hereby acknowledged.
Are you old enough to remember, or have you ever heard about the "cat's eye" on old tube radios that was used for fine tuning stations? The "eye" was generated by a special type of electron-ray vacuum tube like this 6E5 from RCA. A fluorescent disk at the top of the tube was caused to glow depending on a control voltage. The electron-ray tube had to be mounted horizontally in the chassis so that the "eye" was visible from the front of the chassis. This article from the January 1955 edition of Popular Electronics also describes how the electron-ray tube can be used as a voltmeter.

See all articles from Popular Electronics.



The Tuning Eye - How It Works

By E. Bukstein


The electron-ray tube, or as it is more familiarly known, the "tuning eye," is a voltage indicator which, in many applications, replaces the far less rugged and far more costly meter movement. As shown in the drawing of Fig. 1, the plate of the tuning eye tube is circular and is known as the "target." This portion of the tube structure is coated with a fluorescent chemical which glows a vivid green color when it is bombarded by electrons from the cathode. Viewed from the top of the tube (which is usually mounted in a horizontal position so that the top, in reality, becomes the front) the target appears as a ring of green light. The dark disk in the center is a shield to block light from the cathode.

The thin, vertical wire parallel to the cathode is known as the "ray-control electrode." If this electrode is made negative with respect to the target, it will repel some of the electrons. In this way, that portion of the target which does not receive electrons will not glow and will appear as a dark area or a shadow. The more negative the ray-control electrode is made with respect to the target, the wider this shadow becomes. This action is demonstrated diagrammatically in Fig. 2.

The target of the electron-ray tube is coated with a fluorescent chemical which glows when bombarded by electrons from the cathode - RF Cafe
Fig. 1. The target of the electron-ray tube is coated with a fluorescent chemical which glows when bombarded by electrons from the cathode. Photo courtesy of RCA.


The dotted arrows indicate electron paths from cathode to target. - RF Cafe
Fig. 2. (A) The top view represents the top view of the tube (for simplicity, only target, cathode, and ray-control electrode are shown). The dotted arrows indicate electron paths from cathode to target. Ray-control electrode is negative and therefore repels electrons. That part of the target which receives no electrons does not glow. The appearance of the shadow is shown in the lower drawing. (B) Here the ray-control electrode is less negative than in (A). Electrons are not repelled as much and shadow is narrower. (C) When ray-control electrode is at same potential as target, electrons are not repelled. there is no shadow.


                   The electron-ray tube, in many applications, replaces a more delicate meter - RF Cafe
Fig. 3. The electron-ray tube, in many applications, replaces a more delicate meter.
Most electron-ray tubes contain a triode amplifier, housed within the same glass envelope. The plate of the amplifier is internally connected to the ray-control electrode as shown in the diagram of Fig. 4A. The plate current of this triode flows through resistor R and produces a voltage drop of the polarity indicated on the diagram. This drop makes the ray-control electrode negative with respect to the target and therefore produces a shadow. The greater the triode plate current, the greater the voltage drop across resistor R and the wider the shadow becomes. If the triode is biased to cut-off, there will be no drop across resistor R and thus no shadow on the target.

When the electron-ray tube is to be used as a tuning indicator for a broadcast-type receiver, its grid is connected to the a.v.c. (automatic volume control) line as shown in Fig. 4B. When a station is properly tuned in on the broadcast receiver, the a.v.c. voltage will be at its maximum negative value. This negative voltage will then cut off the triode section of the tuning eye tube and there will be no shadow. However, if the receiver is mistuned or is "off station" to one side or the other, the a.v.c. voltage will be reduced. With less negative voltage on its grid, the triode will now draw plate current and produce a voltage drop across resistor R. Under these conditions, a shadow will appear on the target portion of the tube.

Since the width of the shadow appearing on the target of the tube depends on the amount of voltage that is applied to the tube's grid, the electron-ray tube can be used as a simple and rugged voltmeter.

An arrangement of this type is shown in Fig. 5. The type 6E5 electron-ray tube, which is operated with a 1 megohm plate resistor and a 125 volt power supply, will give a zero shadow with -4 volts grid bias. At zero bias, the shadow angle will be 90 degrees. The variable resistor in the cathode circuit serves to bias the tube to cut-off and thus functions as the zero adjustment. The voltage divider and tap switch in the grid circuit provide the three ranges.

The electron-ray tube will serve as a convenient indicator for alignment purposes in receivers which incorporate it. One type of indicator often used for alignment is a d.c. voltmeter to measure the a.v.c. voltage. Only a relative indication of this voltage is needed. The electron-ray tube as connected in a receiver gives just that. END

The ray-control electrode is connected  - RF Cafe
Fig. 4. (A) The ray-control electrode is connected
internally to the plate of the triode. The voltage drop
across resistor R makes the ray-control electrode
negative with respect to target. (B) When the
electron-ray tube is used as a tuning indicator. its
grid is connected to the a.v.c, line. When station is
properly tuned in. a.v.c, voltage biases the grid to
cut-off and the shadow on the eye tube disappears.



Since the width of the shadow depends on  - RF Cafe
Fig. 5. Since the width of the shadow depends on
the amount of voltage applied to the grid the
electron-ray tube can be used as a voltmeter.



Posted 10/17/2011
A Disruptive Web Presence

Custom Search
Over 10,000 pages indexed! (none duped or pirated)

Read About RF Cafe
Webmaster: Kirt Blattenberger
    KB3UON

RF Cafe Software

RF Cascade Workbook
RF Cascade Workbook is a very extensive system cascaded component Excel workbook that includes the standard Gain, NF, IP2, IP3, Psat calculations, input & output VSWR, noise BW, min/max tolerance, DC power cauculations, graphing of all RF parameters, and has a graphical block diagram tool. An extensive User's Guide is also included. - Only $35.
RF system analysis including
frequency conversion & filters

RF & EE Symbols Word
RF Stencils for Visio

Product & Service Directory
Personally Selected Manufacturers
RF Cafe T-Shirts & Mugs

RF Cafe Software

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel