Custom Search
Over 10000 Pages Indexed
Your Host
Click here to read about RF CafeKirt

... single-
what an
engineering website
should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5CCG (5th MOB):
My USAF radar shop

Hobby & Fun

Airplanes and Rockets:
My personal hobby website

Equine Kingdom:
My daughter Sally's horse
riding business website -
lots of info

•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Job Board

About RF Cafe©

RF Cafe E-Mail

After Class: Grounds, Grounds, and Grounded
August 1959 Popular Electronics

August 1959 Popular Electronics

August 1959 Popular Electronics Cover - RF Cafe [Table of Contents]People old and young enjoy waxing nostalgic about and learning some of the history of early electronics. Popular Electronics was published from October 1954 through April 1985. As time permits, I will be glad to scan articles for you. All copyrights (if any) are hereby acknowledged.
Ground is ground the world around. That's a saying that I used to hear Ham radio operators say. In a general sense, it's true, but on a local level grounds can vary widely from location to location, even within a few hundred feet. It is true both for direct current and low frequencies and for frequencies in to the GHz regions. It has to do with the conductivity of the soil and/or rock in the area as well as the amount of moisture and other elements in the ground. This article from the August 1959 edition of Popular Electronics is a good primer on the subject.

See all articles from Popular Electronics.

After Class

By Saunder Harris


After Class: Grounds, Grounds, and Grounded - RF CafeWhy is a good ground so important? Why are some circuits grounded and others not grounded? What is the physical and electrical meaning of the ground symbol when it appears in a diagram?
Grounding actually means making an electrical connection between a piece of equipment or circuit and the earth, thus bringing the connected point to the earth's neutral potential. There are many ways of accomplishing this. The most common way is by connecting the equipment to a cold water pipe by means of a wire and a metal grounding clamp.
Why specifically a cold water pipe? Well, a cold water pipe goes directly to the outside water line which is buried in the earth. A hot water pipe is connected to a furnace or hot water heater and is not a direct ground connection.
Another way of making a ground connection is by connecting the equipment to a metal rod which has been driven deep into the earth. The metal rod is called a ground rod and, to be effective, should go at least eight feet into the ground. A properly installed ground rod is shown in Fig. 1.
If you check your TV antenna, you may find that a ground rod is part of the installation, as is a lightning arrestor. Should lightning strike the antenna, it would find an easier path through the lightning arrestor to the ground rod, and thus into the earth, than through your house.
Ground rod system of grounding is good if the rod is driven well into some moist earth - RF Cafe
Fig. 1. Ground rod system of grounding is good if the rod is driven well into some moist earth.

Ground plane system is useful when an antenna must be installed at a distance from an external ground - RF Cafe
Fig. 2. Ground plane system is useful when an antenna must be installed at a distance from an external ground.
A Good Ground. Whether or not a ground is "good" is determined by the amount of ohmic resistance between the ground rod, or other means of grounding used, and the earth. The less this "earth resistance," the better the ground. The actual resistance measurement is made with an instrument called a megohmmeter which applies a high voltage to a resistance and then measures the current flow.

There are many factors that determine the earth resistance. Some of the more important are:
1. Moisture content of the soil surrounding the grounding element.
2. Composition of the soil. For example: clay is a good contact, rock a poor one.

3. Temperature of the soil.
4. Size, shape, and number of the grounding elements buried in the earth. The more element area in contact with the soil, the better the ground.

Circuit Grounds. The ground in an electrical circuit is the circuit's electrical reference point. Normally when something is "above" ground, it is positive, since the negative side of the circuit is usually grounded. There are times, however, when the positive side is grounded, as in some of the new 12-volt automobile electrical systems. In such cases, the potentials would be considered negative or below ground. Before installing mobile equipment in a car, it is important to determine whether the positive or the negative terminals of the battery are grounded.

When a circuit is grounded and the circuit diagram shows various parts to be at ground potential by the ground symbol, it means, in effect, that these parts are electrically connected. This is generally done by using the chassis as a common grounding point and then connecting the chassis to an external ground.
Equipment is grounded as a safety measure as well as for proper operation of the circuit. If a ground connection is made to the chassis, possibility of shock through contact with the chassis is eliminated since both you and the chassis are at "ground potential."

There are some circuits, in which the chassis is "hot," that should never be grounded. A common example of equipment which should not be grounded is the typical a.c.-d.c. table radio. The instructions which come with these sets generally state, "Caution: Do not connect a ground wire to this set." Since you may have either ground potential or 117 volts a.c. on the chassis (depending on which way you insert the a.c. plug into the power line), these inoffensive-appearing little sets should be handled with due respect, and never be operated outside of their insulated cabinets without taking proper precautions.
Grounds and Antennas. An antenna is nothing more than a conductor whose specific job is to radiate or receive electromagnetic energy. Very often in ham radio the same antenna serves for both transmitting and receiving through the use of a switching arrangement. In this discussion we shall limit ourselves to the role that the earth, or ground, plays in the functioning of the antenna system.
Although antennas are sometimes discussed without taking the earth into consideration, we cannot ignore the earth. When the antenna radiates electromagnetic energy, the earth acts as a reflector for energy which is directed in a downward direction. These waves are reflected back by the earth and combine with the waves which have been radiated directly from the antenna.
If the reflected wave and the direct wave are in phase, that is, if their maximums and minimums coincide, they tend to strengthen each other. If they are out of phase, or do not coincide, the reflected wave weakens the direct wave to the point where, if the two waves are 180° out of phase, cancellation occurs. The way the two waves combine depends to a large extent on the relationship of the antenna to the ground beneath it. Is the ground a good conductor or a poor conductor? Is it rocky? Is it wet or dry? Is the antenna high above the earth? All of these factors are important.
Currents are induced in the earth by that portion of the radiated wave which travels along the ground and is known as the ground wave. Valuable energy is dissipated into the earth by the ground wave and every attempt is made to keep ground-wave losses to a minimum. Fewest losses occur when the wave travels over ground which is a good conductor. This is the reason many commercial stations place their antenna systems near water or marsh lands, the water or wet earth being a much better conductor than dry earth.
Where this physical placement is not possible, in order to make the ground around the antenna as conductive as possible, metal rods or mesh screens are buried near the surface of the earth. They extend about one-half wavelength to either side or radially around the antenna. The actual height of the antenna then becomes its height above this ground screen.
Many times it is practical to mount a vertical antenna on the roof of a building at an inconvenient distance from a good grounding point. A ground system is still for the antenna to operate properly and may be accomplished by simulating a ground condition at the base of the antenna through the use of a ground plane system (see Fig. 2).

In the ground plane system, copper wires cut to quarter wavelengths of the frequencies to which the antenna is tuned are attached radially, with wires of the same length opposite each other, to the base of the antenna mounting. They are insulated from the antenna's driven element and the roof but connected to a good earth ground and the transmission line shield.

In effect, the ground plane system provides a ground cut to specified wavelengths and then suspended in mid-air at the point where it is needed. In practice, ground plane radials generally act as supports for the vertical antenna mast as well as being part of the electrical installation.

Safety and Efficiency. A sound knowledge of basic ground theory and procedures is necessary for each person who works or experiments with electronic devices. Good grounding techniques assure the operation of electronic equipment at maximum efficiency and with minimum electrical shock hazard.

Posted 1/23/2012
A Disruptive Web Presence

Custom Search
Over 10,000 pages indexed! (none duped or pirated)

Read About RF Cafe
Webmaster: Kirt Blattenberger

RF Cafe Software

RF Cascade Workbook
RF Cascade Workbook is a very extensive system cascaded component Excel workbook that includes the standard Gain, NF, IP2, IP3, Psat calculations, input & output VSWR, noise BW, min/max tolerance, DC power cauculations, graphing of all RF parameters, and has a graphical block diagram tool. An extensive User's Guide is also included. - Only $35.
RF system analysis including
frequency conversion & filters

RF & EE Symbols Word
RF Stencils for Visio

Product & Service Directory
Personally Selected Manufacturers
RF Cafe T-Shirts & Mugs

RF Cafe Software

Calculator Workbook
RF Workbench
Smith Chart™ for Visio
Smith Chart™ for Excel