In mathematics, given an
infinite sequence of numbers {a_{n}}, a series is informally the result of adding all those terms
together. These can be written more compactly using the summation symbol ∑. An example is the famous series from
Zeno's Dichotomy:

The terms of the series are often produced according to a certain rule, such as by a formula, by an algorithm, by a sequence of measurements, or even by a random number generator. As there are an infinite number of terms, this notion is often called an infinite series. Unlike finite summations, series need tools from mathematical analysis to be fully understood and manipulated. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics and computer science. - Wikipedia

The terms of the series are often produced according to a certain rule, such as by a formula, by an algorithm, by a sequence of measurements, or even by a random number generator. As there are an infinite number of terms, this notion is often called an infinite series. Unlike finite summations, series need tools from mathematical analysis to be fully understood and manipulated. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics and computer science. - Wikipedia

Taylor's Series | |

Binomial Expansion | |

Exponential Expansion | Logarithmic Expansion |

Sine Expansion | Cosine Expansion |

θ expressed in radians |

## Try Using SEARCH to Find What You Need. >10,000 Pages Indexed on RF Cafe ! |

All trademarks, copyrights, patents, and other rights of ownership to images |