•−•  ••−•    −•−•  •−  ••−•  •
RF Cafe Morse Code >Hear It<

Job Board

About RF Cafe™

Sitemap

Series Expansions

In mathematics, given an infinite sequence of numbers {an}, a series is informally the result of adding all those terms together. These can be written more compactly using the summation symbol ∑. An example is the famous series from Zeno's Dichotomy:

 
\sum_{n=1}^\infty \frac{1}{2^n} = \frac{1}{2}+ \frac{1}{4}+ \frac{1}{8}+\cdots+ \frac{1}{2^n}+\cdots    from Wikipedia - RF Cafe

The terms of the series are often produced according to a certain rule, such as by a formula, by an algorithm, by a sequence of measurements, or even by a random number generator. As there are an infinite number of terms, this notion is often called an infinite series. Unlike finite summations, series need tools from mathematical analysis to be fully understood and manipulated. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics and computer science. - Wikipedia

Taylor's Series
RF Cafe: Taylor's Series
Binomial Expansion
RF Cafe: Binomial Expansion
Exponential Expansion Logarithmic Expansion
RF Cafe: Exponential Expansion RF Cafe: Logarithmic Expansion
Sine Expansion Cosine Expansion
RF Cafe: Sine Expansion RF Cafe: Cosine Expansion
θ expressed in radians
Custom Search
More than 10,000 searchable pages indexed.

Your RF Cafe
Progenitor & Webmaster

Click here to read about RF CafeKirt Blattenberger... single-handedly redefining what an engineering website should be.

View the YouTube RF Cafe Intro Video Carpe Diem!
(Seize the Day!)

5th MOB: My USAF radar shop

Airplanes and Rockets: My personal hobby website

Equine Kingdom: My daughter Sally's horse riding website